
On the Energy Efficiency of Last-Level Cache Partitioning

Abstract

Computing systems frequently have a mix of interactive,
real-time applications and background computation to exe-
cute. In order to guarantee responsiveness, the interactive and
background applications are often run on completely disjoint
sets of resources to ensure performance isolation. These prac-
tices are expensive in terms of battery life, power and capital
expenditures. In this paper, we evaluate the potential of hard-
ware cache partitioning mechanisms and policies to provide
energy efficient operating environments by running foreground
and background tasks simultaneously while mitigating perfor-
mance degradation. We evaluate these tradeoffs using real
multicore hardware that supports cache partitioning and en-
ergy measurement. We find that for modern, multi-threaded
benchmarks there are only a limited number of application
pairings where cache partitioning is more effective than naive
cache sharing at reducing energy in a race-to-halt scenario.
However, in contexts where a constant stream of background
work is available, a dynamically adaptive cache partition-
ing policy is effective at increasing background application
throughput while preserving foreground application perfor-
mance.

1. Introduction
Energy efficiency and predictable response times are first-

order concerns across the entire computing spectrum, ranging
from mobile clients to warehouse-scale cloud computers.

For mobile devices, energy efficiency is critical, as it af-
fects both battery life and skin temperature, and predictable
response times are essential for providing a fluid user inter-
face. Some mobile systems have gone so far as to limit which
applications can run in the background [1] to preserve respon-
siveness and battery life, despite the obvious concerns this
raises for user experience.

In warehouse-scale computing, energy inefficiencies are felt
in the operational costs of consuming electricity and can sig-
nificantly impact the capital costs of the infrastructure needed
to distribute power and cool the servers [3, 17]. Researchers
have also found unpredictable response times to be very ex-
pensive in warehouse-scale computing [30]. In one example,
inserting delays in a search engine slowed down user response
time by more than the delay, which decreased the number of
overall searches, user satisfaction, and revenue; the results
were so negative that the researchers stopped their experi-
ment early [30]. To preserve responsiveness, cloud computing
providers often dedicate large clusters to single applications,
despite the hardware being routinely utilized at only 10% to
50% [3].

Due to the diminishing returns from hardware techniques
to extract further instruction-level parallelism from single-
threaded code and power concerns caused by the end of tra-
ditional transistor scaling, all platforms have now moved to
multicore processors [2]. Application workloads already in-
clude parallelized codes, and we expect this fraction to in-
crease over time. However, few applications scale perfectly
with increasing core count, leading to underutilized resources.

In both client and cloud scenarios, it is desirable to make use
of the underutilized resources to schedule background tasks
to improve overall throughput and energy efficiency, but only
if this results in minimal disruption of latency-sensitive user-
facing tasks. In the client, the goal is to complete background
tasks while the foreground task is active, so that the mobile
device can more quickly go into a very low-power hibernation
mode and thereby extend battery life. In the cloud, the goal is
to obtain the greatest value from the huge sunk investment in
machines, power distribution, and cooling.

The obvious danger in co-scheduling computational tasks to
achieve better utilization is that low-priority background tasks
can degrade the responsiveness of high-priority foreground
ones by impacting any shared hardware resources, such as
on-chip shared cache or off-chip DRAM bandwidth. Mecha-
nisms to mitigate such degradation are the subject of active
research [16, 23]. In particular, techniques for partitioning
the capacity of a shared last-level cache (LLC) have received
much attention [16,20,28,32]. However, past work has mostly
been simulation-based, which limits the size of applications
considered, and has predominantly considered multiprogram-
ming of a limited set of sequential applications.

In this paper, we use a real commercial multicore proces-
sor that includes an experimental hardware LLC partitioning
mechanism to explore the potential benefits of last-level cache
partitioning using multiple large parallel applications taken
from several modern benchmark suites.

We first characterize three modern benchmark suites in
terms of their scalability, cache capacity requirements, and
sensitivity to interference with respect to shared hardware
resources. We measure not only the performance impact of
different resource allocations on the benchmarks, but also their
effect on socket and overall system energy consumption. We
show that many applications have multiple different resource
allocations that provide close to the best runtime and lowest en-
ergy usage, providing opportunities to transfer resources away
from the foreground application to support co-scheduling.

We next take a subset of representative applications and ex-
plore how these co-scheduling opportunities play out in prac-
tice. We evaluate preserving one application’s performance
while maximizing the throughput of a background applica-

1

tion (as in a cloud), as well as finishing a finite set of tasks
before entering a low-power state (as on a client). Our study
further characterizes the benefit of introducing increasingly
sophisticated policies to manage the LLC partitioning.

Our results show that doing nothing to protect foreground
applications while co-scheduling tasks results on average a
slowdown of 10%, with the full range being between 1% and
82%. Compared to time-multiplexing tasks across the whole
machine, we show it is possible to use co-scheduling to get an
average improvement in energy by 12 %, with the full range
being between -14% and 37 %. However, while most appli-
cations do have the requisite qualities to make co-scheduling
effective, only a subset significantly benefit from software-
managed partitioning of the LLC. The resource usage of both
the foreground and background tasks must be considered when
deciding which partitioning strategy to deploy. We also inves-
tigate deploying a dynamic repartitioning framework which
improves background application throughput by 22% on av-
erage, with the full range between 0% and 322%. While the
paper does not evaluate server hardware, we believe this ap-
proach and resulting conclusions for scheduling philosophy is
just as relevant for the cloud, although the quantitative results
would surely change.
2. Experimental Methodology

In this section, we describe our hardware platform and the
benchmarks we use in our evaluation.
2.1. Platform Configuration

In this paper, we use a prototype version of Intel’s Sandy
Bridge x86 processor to collect results on resource allocation
and application co-scheduling. By using a real hardware pro-
totype, we are able to run full applications for realistic time
scales and workload sizes, and while running a standard op-
erating system. The processor is similar to the commercially
available client chip, but with additional hardware to support
way-based cache partitioning [] in the last-level cache (LLC).

The Sandy Bridge client chip has four quad-issue out-of-
order superscalar cores, each of which supports two Hyper-
Threads using simultaneous multithreading [18]. Each core
has private 32 KB instruction and data caches, as well as a
256 KB private non-inclusive L2 cache. The LLC is a 12-way
set-associative 6 MB inclusive L3 cache, shared among all
cores using a ring-based interconnect. All three cache levels
are write-back. Larger server versions of the same processor
family have up to 15 MB of LLC capacity.

The cache partitioning mechanism is way-based and mod-
ifies the cache-replacement algorithm. Each core can be as-
signed a subset of the 12 ways in the LLC. Although all cores
can hit on data stored in any way, a core can only replace data
stored in one of its assigned ways. Allocation of ways among
cores can be completely private, completely shared, or over-
lapping. Data is not flushed when the way allocation changes;
newly fetched data will just be written into one of the assigned
ways according to the updated allocation configuration.

We use a customized BIOS that enables the cache partition-

ing mechanism, and run unmodified Linux-2.6.36 for all of
our experiments. We use the Linux taskset command to pin
each application to subsets of the available HyperThreads.
2.2. Performance and Energy Measurement

To measure application performance, we use the libpfm

library [11,26], built on top of the perf_events infrastructure
introduced in Linux 2.6.31, to access various performance-
monitoring counters available on the machine [19].

To measure on-chip energy, we use the energy counters
available on Sandy Bridge to collect the energy used by the
entire socket and also the total combined energy of cores, their
private caches, and the LLC. We access these counters using
the Running Average Power Limit (RAPL) interfaces [19].
The counters measure power at a 1/216 second granularity.

In addition, we use a FitPC external multimeter to measure
the power consumed at the wall socket by the entire system,
at a 1 second granularity. Total system power is generally
between 185 W and 240 W. The system-level values are cor-
related with data collected from the hardware energy counters
using time stamps. We observed less than one second of delay
in these measurements consistently across all experiments. To-
gether, these mechanisms allow us to collect accurate energy
readings over the entire course of an application’s execution.
2.3. Description of Workloads

We built our workload using a wide range of codes
from three different popular benchmark suites: SPEC CPU
2006 [31], DaCapo [6] and PARSEC [5]. We included some
additional application benchmarks to broaden the scope of
the study, and some microbenchmarks that exercise certain
features of the system.

The SPEC CPU 2006 benchmark suite [31] is a CPU-
intensive, single-threaded benchmark suite, designed to stress
a system’s processor, memory subsystem and compiler. Using
the similarity analysis performed by Phansalkar et al. [27],
we subset the suite, selecting 4 integer benchmarks (astar,
libquantum, mcf, omnetpp) and 4 floating-point benchmarks
(cactusADM, calculix, lbm, povray). Based on the characteri-
zation study by Jaleel [21], we also pick 4 extra floating-point
benchmarks that stress the LLC: GemsFDTD, leslie3d, soplex
and sphinx3. When multiple input sets and sizes are available,
we pick the single ref input indicated by Phansalkar et al. [27].
SPEC is the only benchmark suite used in many previous
characterizations of LLC partitioning [16, 28, 32].

The DaCapo benchmark suite is intended as a tool for
Java benchmarking, consisting of a set of open-source, real-
world applications with non-trivial memory loads, including
both client and server-side applications. We used the latest
2009 release. The managed nature of the DaCapo runtime
environment has been shown to make a significant difference
in some schedulding studies [12], and is also representative of
the increasing relevance of such runtimes.

The PARSEC benchmark suite is intended to be representa-
tive of parallel real-world applications [5]. PARSEC programs
use various parallelization approaches, including data- and

2

1 2 3 4 5 6 7 8
Number of Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanimate

freqmine

raytrace

streamcluster

swaptions

vips

x264

(a) PARSEC applications

1 2 3 4 5 6 7 8
Number of Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

avrora

batik

eclipse

fop

h2

jython

luindex

lusearch

pmd

sunflow

tomcat

tradebeans

tradesoap

xalan

(b) DaCapo applications

1 2 3 4 5 6 7 8
Number of Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

ParaDecoder

browser_animation

ccbench

g500_csr

stencilprobe

stream_uncached

(c) Parallel apps and microbenchmarks

Figure 1: Normalized speed up as we increase the number of threads allocated to each application.

task-parallelization. We use the version of the benchmarks
parallelized with the pthreads library, with the exception of
freqmine, which is only available in OpenMP. We used the
full native input sets for all the experiments. Past characteri-
zations of PARSEC have found it to be sensitive to available
cache capacity [5], but also resilient to performance degrada-
tion in the face of intra-application sharing of caches [38].

We added four additional parallel applications to help en-
sure we covered the space of interest: Browser_animation is a
multithreaded kernel representing a browser layout animation;
G500_csr code is a kernel performing breadth-first search of a
large graph for the Graph500 contest, based on a new hybrid
algorithm [4]; Paradecoder is a parallel speech-recognition
application that takes audio waveforms of human speech and
infers the most likely word sequence intended by the speaker;
Stencilprobe simulates heat transfer through a fluid using a
parallel stencil kernel over a regular grid [22].

We also added two microbenchmarks that stress the mem-
ory system: stream_uncached is a memory and on-chip band-
width hog that continuously brings data from memory without
caching it, while ccbench explores arrays of different sizes to
determine the structure of the cache hierarchy.
3. Performance Characterization

Our first set of experiments explore the sensitivity of all
of the applications to different resources in the system: the
number of assigned hyperthreads, the allocated LLC capacity,
the various prefetchers, and the on-chip LLC bandwidth and
off-chip DRAM bandwidth. We then use machine learning to
cluster applications based on their resource requirements, and
select a set of representative applications for further evaluation.
3.1. Thread Scalability

We begin with a study of parallel scalability when increas-
ing the number of threads for a fixed problem size. Figure 1
shows the speedup of each application as we increase its allo-
cation from 1 to 8 threads. When adding new threads, we first
assign both hyperthreads available in one core before moving
on to the next core. For example, the allocation with four
threads corresponds to running on both hyperthreads in two
cores. This allocation strategy fits our scenario of consolidat-

Table 1: Summary of thread scalability

Suite Low scalability Saturated scalability High scalability

PARSEC − canneal, dedup, raytrace

blackscholes, bodytrack,
facesim, ferret„ vips, x264,

fluidanimate, freqmine,
streamcluster, swaptions

DaCapo h2, tradebeans,
tradesoap

avrora, batik, eclipse,
fop, jython, luindex,

lusearch

pmd, sunflow, tomcat,
xalan

SPEC all − −

µbench-
marks

ccbench,
paradecoder,

stream uncached

browser_animation,
g500, stencilprobe −

ing applications in a multiprogrammed environment, where
different applications should be pinned to different cores to
avoid thrashing of the inner levels of the cache hierarchy [35].

Many PARSEC applications scale well (Fig. 1a): six bench-
marks scale up over 4×, four benchmarks between 3–4×, and
just three show more modest scaling factors (2–3×). For the
majority of these applications, we can see that performance
does not saturate after a particular number of threads, and
keeps growing at a similar rate throughout. This scaling is
not the seen for the DaCapo applications in Fig. 1b, which
are mostly less scalable than the PARSEC applications. In
this suite, only two applications show speedups over 4×, two
between 2–3×, and ten between 1–2.3×. Furthermore, the
performance of all the applications that do not scale well
saturates after 4 or 6 threads. The intrinsic parallelism avail-
able in some of the DaCapo benchmarks together with the
scalability bottlenecks for garbage collectors explain this be-
havior [15]. Finally, the scalability results for the additional
parallel applications and microbenchmarks are presented in
Figure 1c. The microbenchmarks are single-threaded (ccbench
and stream_uncached), while the parallel applications are all
memory-bandwidth-bound on this platform (we have observed
parallel speedups on other platforms), which explains the lim-
ited scalability of these benchmarks.

We now classify applications according to their scalability
with different number of threads. Table 1 groups applica-
tions in each suite into three categories: applications with low
scalability, applications that scale up to a reduced number of

3

0 1 2 3 4 5 6
Cache Space (MB)

0

50

100

150

200

250

300

350

E
xe

cu
ti

o
n

 T
im

e
 (

s)

swaptions

1 thread
2 threads

4 threads
8 threads

0 1 2 3 4 5 6
Cache Space (MB)

0

50

100

150

200

250

300

350

400

E
xe

cu
ti

o
n

 T
im

e
 (

s)

tomcat

1 thread
2 threads

4 threads
8 threads

0 1 2 3 4 5 6
Cache Space (MB)

0

100

200

300

400

500

600

E
xe

cu
ti

o
n

 T
im

e
 (

s)

471.omnetpp

1 thread

Figure 2: Applications representative of different LLC allocation sensitivities.

threads, and applications that continue to scale up with the
number of threads. There are clear differences between suites,
with PARSEC clearly being the most scalable.
3.2. Last-Level Cache Sensitivity

We next evaluate how sensitive the benchmarks are to
changes in the amount of LLC capacity made available to
them. Taking advantage of the way-based cache partitioning
mechanism in the LLC, we change the LLC space allocated
to a given application from 0.5 MB to 6 MB. In the interests
of space, we show only the behavior of three representative
applications in Figure 2.

The first conclusion that we can draw is that running an
application inside a 0.5 MB direct-mapped LLC is always
detrimental. In addition to conflicts from the direct mapping,
inclusivity issues with inner levels of cache lead to significant
increases in execution time. The second insight is that the
LLC is clearly overprovisioned for these applications. We
found 44% of the applications only require 1 MB to reach
their maximum performance, while 78% of the applications
require less than 3 MB. Other authors have observed similar
behavior for cloud computing applications [14].

Finally, we did not observe clear knees in execution time
as we increase the allocated LLC capacity for any applica-
tion. Previous simulation-based studies took advantage of
these knees to propose dynamic cache partitioning techniques.
In contrast, performance improves smoothly with the allo-
cated LLC capacity for all applications. The combination of
memory-mapping functions, randomized LLC-indexing func-
tions, prefetchers, pseudo-LRU eviction policies, as well as
having multiple threads simultaneously accessing the LLC,
serve to remove clear working-set knees in the real system.

Next, we classify applications according to their LLC sensi-
tivity, ignoring the pathological direct-mapped 0.5 MB case.
Figure 2 shows the behavior of three representative applica-
tions. Low utility applications yield the same performance
despite increased available LLC space (swaptions). Saturated
utility applications benefit from extra LLC space up to a satu-
ration point (tomcat). Finally, high utility applications always
benefit from more LLC space (471.omnetpp). We observe
that as we increase the number of threads assigned to an ap-

Table 2: Summary of LLC allocation sensitivity.

Suite Low Saturated High

PARSEC

blackscholes, bodytrack,
dedup, ferret, fluidanimate,

freqmine, raytrace, vips,
streamcluster, swaptions,

canneal, facesim x264

DaCapo avrora, sunflow
batik, h2, jython,
luindex, tomcat,

tradesoap

eclipse, fop,
lusearch, pmd,

tradebeans, xalan

SPEC

436.cactusADM,
437.leslie3d, 450.soplex,
453.povray, 454.calculix,

459.GemsFDTD,
462.libquantum, 470.lbm

429.mcf, 473.astar,
482.sphinx3 471.omnetpp

Parallel ap-
plications − paradecoder,

stencilprobe
browser animation,

g500
µbench-
marks − ccbench, stream

uncached

plication, the LLC sensitivity decreases. Performance is less
dependent on LLC size with more cores as there is both a
larger aggregate L1 and L2 private cache, and greater overlap
of off-chip memory accesses from different cores.

Table 2 lists the benchmarks in each suite that belong to
each one of the three LLC utility categories. Applications with
more than 10 LLC accesses per kilo-instruction are highlighted
in bold. These applications may lead to on-chip LLC and
off-chip DRAM bandwidth contention and LLC pollution,
even if they do not benefit (in terms of execution time) from
the allocated space. PARSEC applications have much more
relaxed LLC requirements than the other suites. SPEC CPU
2006 applications do not generally benefit from the large LLC,
but do have a large number of accesses to the LLC.

3.3. Prefetcher Sensitivity
We next characterize the sensitivity of applications to the

behavior of hardware prefetchers, because certain prefetchers
are a shared resource that cannot be partitioned (unlike hy-
perthreads and LLC). In a multi-programmed environment,
access streams from different applications could impact sensi-
tive applications if they degrade prefetcher efficacy.

There are four distinct hardware prefetchers on Intel Sandy
Bridge platforms: 1) Per-core DCU IP-prefetchers look for
sequential load history to determine whether to prefetch the
data to the L1 caches; 2) DCU streamer prefetchers detect
multiple reads to a single cache line in a certain period of

4

b
la

ck
sc

h
o
le

s
b
o
d
y
tr

a
ck

ca
n
n
e
a
l

d
e
d
u
p

fa
ce

si
m

fe
rr

e
t

fl
u
id

a
n
im

a
te

fr
e
q
m

in
e

ra
y
tr

a
ce

st
re

a
m

cl
u
st

e
r

sw
a
p
ti

o
n
s

v
ip

s
x
2

6
4

a
v
ro

ra
b
a
ti

k
e
cl

ip
se fo
p h
2

jy
th

o
n

lu
in

d
e
x

lu
se

a
rc

h
p
m

d
su

n
fl
o
w

to
m

ca
t

tr
a
d
e
b
e
a
n
s

tr
a
d
e
so

a
p

x
a
la

n
4

2
9

.m
cf

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l
e
sl

ie
3

d
4

5
0

.s
o
p
le

x
4

5
3

.p
o
v
ra

y
4

5
4

.c
a
lc

u
lix

4
5

9
.G

e
m

sF
D

T
D

4
6

2
.l
ib

q
u
a
n
tu

m
4

7
0

.l
b
m

4
7

1
.o

m
n
e
tp

p
4

7
3

.a
st

a
r

4
8

2
.s

p
h
in

x
3

P
a
ra

D
e
co

d
e
r

b
ro

w
se

r_
a
n
im

e
cc

b
e
n
ch

g
5

0
0

_c
sr

st
e
n
ci

lp
ro

b
e

st
r_

u
n
ca

ch
e
d0.0

0.2

0.4

0.6

0.8

1.0

1.2

PARSEC DACAPO SPEC MICROB

Figure 3: Normalized execution time when enabling all
prefetchers enabled w.r.t. all prefetchers disabled.

time and choose to load the following cache lines to the L1
data caches; 3) Mid-Level cache (MLC) spatial prefetchers
detect requests on two successive cache lines and are triggered
if the adjacent cache lines are accessed; 4) MLC streaming-
prefetchers work similarly to the DCU streamer-prefetchers,
which predict the immediate future access patterns based on
the current cache line readings. We can activate/deactivate all
the DCU and MLC prefetchers by setting the corresponding
machine state register (MSR) bits.

Figure 3 shows the reduction in execution time of all the
evaluated applications when all prefetchers are active normal-
ized to the configuration with all prefetchers disabled. In
general, the evaluated applications are more sensitive to the
DCU spatial prefetcher, but there are applications in which the
MLC prefetcher is also important for their final performance.
Nearly all applications are insensitive to the prefetcher config-
uration (36 out of 46). In general, we have observed that as
we increase the number of threads running in the system, the
effectiveness of the prefetcher is reduced as a consequence.

In the case of PARSEC applications, only facesim and
streamcluster benefit from the prefetchers. No DaCapo
application benefits from the prefetchers, and lusearch per-
formance even degrades when the prefetchers are active. In
the case of the additional applications and microbenchmarks,
only ccbench, g500 and stencilprobe benefit from the
prefetcher. In contrast, SPEC benchmarks are more sensi-
tive to the prefetchers, with 450.soplex, 459.gemsFDTD,
462.libquantum and 470.lbm being the most sensitive ap-
plications.
3.4. On-Chip LLC and DRAM Bandwidth Sensitivity

It is important to characterize how sensitive applications
are to the amount of bandwidth contention occuring in the
system because bandwidth is a shared resouce that cannot
be partitioned (unlike hyperthreads and LLC capacity). In a
multi-programmed environment, access streams from different
applications could cause performance degradation of sensitive

b
la

ck
sc

h
o
le

s
b
o
d
y
tr

a
ck

ca
n
n
e
a
l

d
e
d
u
p

fa
ce

si
m

fe
rr

e
t

fl
u
id

a
n
im

a
te

fr
e
q
m

in
e

ra
y
tr

a
ce

st
re

a
m

cl
u
st

e
r

sw
a
p
ti

o
n
s

v
ip

s
x
2

6
4

a
v
ro

ra
b
a
ti

k
e
cl

ip
se fo
p h
2

jy
th

o
n

lu
in

d
e
x

lu
se

a
rc

h
p
m

d
su

n
fl
o
w

to
m

ca
t

tr
a
d
e
b
e
a
n
s

tr
a
d
e
so

a
p

x
a
la

n
4

2
9

.m
cf

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l
e
sl

ie
3

d
4

5
0

.s
o
p
le

x
4

5
3

.p
o
v
ra

y
4

5
4

.c
a
lc

u
lix

4
5

9
.G

e
m

sF
D

T
D

4
6

2
.l
ib

q
u
a
n
tu

m
4

7
0

.l
b
m

4
7

1
.o

m
n
e
tp

p
4

7
3

.a
st

a
r

4
8

2
.s

p
h
in

x
3

P
a
ra

D
e
co

d
e
r

b
ro

w
se

r_
a
n
im

e
cc

b
e
n
ch

g
5

0
0

_c
sr

st
e
n
ci

lp
ro

b
e

st
r_

u
n
ca

ch
e
d0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

PARSEC DACAPO SPEC MICROB

3
.8

Figure 4: Increase in execution time when running with a
bandwidth hog microbenchmark.

applications if they oversubscribe particular network links,
memory channels, or MSHR resources.

We characterize applications according to their performance
when running together with a bandwidth-hogging microbench-
mark (stream_uncached), which streams through memory
without caching data in the LLC using specially tagged load
and store instructions. Bandwidth-sensitive applications will
suffer from being run concurrently with this benchmark. Fig-
ure 4 shows the increase in execution time of all applications
when running with stream_uncached. Only two PARSEC
applications suffer (fluidanimante and streamcluster),
while DaCapo applications are not affected much by band-
width contention. In the case of SPEC, some bench-
marks are not affected at all (436.cactusADM, 453.povray,
454.calculix, 473.astar) and others are heavily af-
fected (450.soplex, 459.gemsFDTD, 462.libquantum,
470.lbm). In contrast, all the added parallel applications are
bandwidth sensitive. In general, the evaluated applications are
more sensitive to bandwidth contention than to the prefetcher.
3.5. Clustering Analysis

Using the characterization of the applications, we select a
subset of the benchmarks that are representative of various
responses to resource allocations. Following in the footsteps
of [27], we use the machine learning technique of hierarchical
cluster analysis to select representative benchmarks. Picking
representative applications enables us to make application
co-scheduling pairings tractable to evaluate. Additionally it
allows us to better understand how classes of applications
behave when sharing the LLC.

We use a popular hierarchical clustering algorithm [27] pro-
vided by the Python library scipy-cluster with the single-
linkage method because it simultaneously looks at multiple
clustering possibilities, allowing the user to select the desired
number of clusters using a dendrogram.

In order to perform the cluster analysis, we first create a
feature vector for each application using the values in the

5

Table 3: Cluster representatives

Suite Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

PARSEC − − ferret x264 dedup −
DaCapo h2 − sunflow fop avrora batik

SPEC 429.mcf 459.gems-
FDTD − − − −

µbench-
marks

ParaDe-
coder ccbench − browser

animation
stencil-
probe −

Charac-
teristics

Low
scalability,
sensitive
to LLC

Low scalability,
prefetcher and

bandwidth
sensitive

High
scalability,

reduced
LLC utility

Saturated
scalability,

LLC
sensitive

Saturated
scalability,

LLC
insensitive

Saturated
scalability,
bandwidth
sensitive

previous subsection: 1) execution time as we increase the
number of threads; 2) execution time as we increase the LLC
size; 3) prefetcher sensitivity; and 4) bandwidth sensitivity.
All metrics are normalized to the interval [0,1]. In total we
use vectors with 19 features (7+10+1+1).

The clustering algorithm finds the smallest Euclidean dis-
tance of a pair of feature vectors and forms a cluster containing
that pair. It continues selecting the next smallest distance be-
tween a pair and forms another cluster. Linkage criteria can
be uses to adjust cluster formation. The single-linkage we
selected uses the minimum distance between a pair of objects
in different clusters to determine the distance between them.

47
3.

as
ta

r
42

9.
m

cf
43

7.
le

sl
ie

3d
45

3.
p
ov

ra
y

45
4.

ca
lc

u
li
x

43
6.

ca
ct

u
sA

D
M h
2

P
ar

aD
ec

od
er

47
1.

om
n
et

p
p

48
2.

sp
h
in

x
3

46
2.

li
b
q
u
an

tu
m

45
0.

so
p
le

x
45

9.
G

em
sF

D
T

D
47

0.
lb

m
cc

b
en

ch
st

r
u
n
ca

ch
ed

fl
u
id

an
im

at
e

fa
ce

si
m

st
re

am
cl

u
st

er
fr

eq
m

in
e

sw
ap

ti
on

s
v
ip

s
fe

rr
et

to
m

ca
t

b
od

y
tr

ac
k

su
n
fl
ow

p
m

d
x
26

4
x
al

an
g5

00
˙c

sr
b
ro

w
se

r
an

im fo
p

ec
li
p
se

ra
y
tr

ac
e

b
la

ck
sc

h
ol

es
av

ro
ra

d
ed

u
p

ca
n
n
ea

l
st

en
ci

lp
ro

b
e

tr
ad

eb
ea

n
s

lu
se

ar
ch

tr
ad

es
oa

p
jy

th
on

lu
in

d
ex

b
at

ik

0.0

0.5

1.0

1.5

2.0

2.5

L
in

k
ag

e
D

is
ta

n
ce

Figure 5: Clustering based on execution time, LLC space,
memory bandwidth, and prefetcher sensitivity.

Figure 5 shows the dendogram for the studied applications.
The Y-axis represents the linkage-distance between applica-
tions. Applications within a distance of 0.9 are set with the
same color. On the X-axis, benchmarks are positioned close
to each other when the distance metric is smaller. Benchmarks
that are outliers have larger linkage distances to the rest of the
clusters.

The first two clusters are comprised of applications with
low thread scalability. The first cluster is more sensitive to

LLC space, but less sensitive to bandwidth and the prefetcher.
Applications in the third cluster present high thread scalability
and low cache utility and are insensitive to the prefetcher. The
last three clusters are comprised of applications with saturated
thread scalability, but different cache utility. The fourth cluster
is more sensitive to the cache space than the rest, the fifth
is insensitive to cache space, and the sixth is insensitive to
bandwidth contention. There is also a cluster with only one
application (fluidanimate), which stands apart as it only runs
correctly when allocated a number of threads that is a power
of 2. Due to this irregularity, we do not consider this cluster
any further in our analysis.

The representative of each cluster is the benchmark closest
to the centroid of the cluster. Table 3 lists the representatives
per benchmark suite (when such a representative exists in
a cluster). The overall representative is highlighted in bold.
From this point onward in the paper we perform a more de-
tailed analysis of the representative applications only.
4. Energy-Performance Tradeoffs

Our next experiments explore the power, energy, and per-
formance tradeoffs available in our system.

Controlling the number of cores assigned to an applica-
tion, and the frequency at which those cores run, is the most
well-studied way by which to change energy consumption.
However, it is worth noting that making energy-efficient opti-
mizations sometimes involves counter-intuitive choices. For
example, activating additional cores or raising frequency in-
creases power consumption, but can result in lower overall
energy consumption per task, since the task may finish ear-
lier and we therefore expend less energy keeping the entire
platform active. This operating scenario is often described
as race-to-halt, meaning that the optimal energy efficiency
is obtained by optimizing for the highest performance to al-
low the platform to shut down and save energy when the task
completes. Conversely, a memory-bound application that is
allocated additional cores or run at a higher frequency is un-
likely to realize any performance benefits, but would consume
additional energy as a result of running at a higher power level
while waiting for data to be provided by the memory system.

Cache capacity allocation decisions are usually more
straightforward, and typically only impact energy by changing
the number of LLC misses an application incurs. LLC misses
consume energy as the required data must be fetched from
DRAM and the runtime of the program is sometimes increased
as well. Socket power does not change as a function of the
cache size given to an application, since current hardware has
no capability to power-gate individual cache subsets. This
motivates us to hand underutilized capacity over to another
application instead.

To better understand the space of possible performance and
energy tradeoffs, we executed each respresentative with all
possible thread and way allocations to measure the perfor-
mance and energy of each resource set. Each benchmark is
tested with 1–8 threads and 1–12 cache ways (96 different allo-

6

400 420 440 460 480
35

40

45

50

55

60

65
M

is
se

s
p
e
r

K
ilo

 I
n
st

rs
. 429.mcf

1 HT 2 HT 3 HT 4 HT 5 HT 6 HT 7 HT 8 HT

30.5 31.0 31.5 32.0 32.5 33.0 33.5
6.2

6.4

6.6

6.8

7.0

7.2

7.4
459.GemsFDTD

80 160 240 320 400
1.0

1.5

2.0

2.5

3.0

3.5

4.0
ferret

2.4 3.2 4.0 4.8 5.6 6.4
0

1

2

3

4

5

6

7

8
fop

15 20 25 30 35 40 45
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
dedup

5.6 6.4 7.2 8.0 8.8 9.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
batik

400 420 440 460 480
11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

S
o
ck

e
t

E
n
e
rg

y
 (

K
J)

30.5 31.0 31.5 32.0 32.5 33.0 33.5
0.98

1.00

1.02

1.04

1.06

1.08

1.10

80 160 240 320 400
2

4

6

8

10

12

14

2.4 3.2 4.0 4.8 5.6 6.4
0.08

0.10

0.12

0.14

0.16

0.18

0.20

15 20 25 30 35 40 45
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

5.6 6.4 7.2 8.0 8.8 9.6
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

400 420 440 460 480
80

85

90

95

100

W
a
ll

E
n
e
rg

y
 (

K
J)

30.5 31.0 31.5 32.0 32.5 33.0 33.5
6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.0

80 160 240 320 400
10

20

30

40

50

60

70

80

90

2.4 3.2 4.0 4.8 5.6 6.4
0.4

0.6

0.8

1.0

1.2

1.4

15 20 25 30 35 40 45
3

4

5

6

7

8

9

5.6 6.4 7.2 8.0 8.8 9.6
1.0

1.2

1.4

1.6

1.8

2.0

2.2

1 2 3 4 5 6

LLC Allocation (MB)

Execution Time (s)

Figure 6: Example performance, energy and miss rate of resource allocations

cations). Figure 6 shows plots of the runtime, LLC misses per
kilo instruction (MPKI), and total socket and wall energy con-
sumption of all possible resource allocations for the six cluster
representatives. When considering execution time versus miss
rate, we can see that some applications have runtimes that are
tightly correlated with miss rate (429.mcf and fop), while oth-
ers are completely independent (ferret and dedup), and some
see diminishing returns (459.GemsFDTD and batik). We can
also see many points with nearly identical execution time but
varying resource allocations, indicating that there should be
spare resources available for a background computation to use
when the application is running.

When considering energy, our measurements strongly sug-
gest that we are operating in the race-to-halt scenario for
nearly all of our benchmarks. This is specially significant
in the case of the wall energy, since the energy consumed in
other parts of the system adds to total energy consumption.
While there are a spread of points to consider when picking
an allocation that minimizes LLC miss rate at a particular
execution time, for nearly all benchmarks this curve narrows
significantly when energy is factored in. We see this effect be-
cause in general miss rates are correlated with both increased
energy and increased execution time, limiting the possibilities
for a high-miss-rate allocation that also has lower energy via
a faster runtime, or a faster-runtime allocation that expends
more energy than it saves.

A important final point to note when looking at Figure 6 is
that for a given target runtime or energy there are multiple re-
source allocations that are equivalent to one another (allowing
us to use larger LLC allocations to make up for smaller core
allocations or vice versa). Figure 7 illustrates this point by
showing the contour plots of the wall energy for each bench-
mark. Very similar figures are obtained when considering
runtime and socket energy. Significantly, many applications
have one or more energy-optimal configurations that are not
the largest allocation. The additional resources contained in
the largest allocations did not help these applications improve
runtime, and thereby energy. For instance, some applications
do not benefit from having more than one assigned thread
(429.mcf and 459.GemsFDTD), others require all threads to
reach the optimal energy consumption (dedup and ferret), and
some applications have a margin of possible thread counts that
are still energy-efficient (batik and fop). More importantly, all
of them can yield some space in the LLC without affecting
their performance, ranging from 0.5 MB (429.mcf) to 4 MB
(batik and ferret). This resource gap between equally optimal
allocations presents us with an opportunity: we could run ad-
ditional work concurrently on the remaining LLC and core
resources, assuming we can prevent destructive interference.

7

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
o
ca

ti
on

 (
M

B
)

429.mcf

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

g
y
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
o
ca

ti
on

 (
M

B
)

459.GemsFDTD

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

g
y
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
o
ca

ti
on

 (
M

B
)

ferret

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

g
y
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
o
ca

ti
on

 (
M

B
)

fop

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

g
y
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
oc

at
io

n
 (

M
B

)

dedup

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

g
y
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
oc

at
io

n
 (

M
B

)

batik

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

g
y
 I

n
cr

ea
se

Figure 7: Wall energy contour plots for the cluster represen-
tatives. Darker colors represent higher energy con-
sumptions.

5. Multiprogram Analyses
In this section, we show that we can often take advantage

of the above observation on real hardware and reduce the
resource allocation of the foreground application and run a
concurrent background application to save energy and improve
system throughput, without impacting foreground application
performance. For some combinations of applications, we can
effectively consolidate applications without even partitioning
the LLC. However, other combinations require LLC partition-
ing to protect the foreground application’s performance. We
examine the relative effectiveness of various LLC partitioning
strategies for these cases. Finally, for some combinations, not
even LLC partitioning is effective, and we describe which
additional mechanisms would be useful to enable effective
consolidation.
5.1. Performance Degradation in a Shared Cache

To begin, we run all possible pairs of applications together
with no cache partitioning. We run each multithreaded applica-
tion on 2 cores with 2 active HTs, making a total of 4 threads
per application. In addition to LLC capacity, both applications
are sharing the on-chip interconnection network to access the
LLC and off-chip memory bandwidth.

Figure 8 shows a heat map of the relative execution time of
the foreground application for all possible pairs of applications.
The values are normalized to the execution time of the appli-
cation when running alone on the system with 2 cores with

b
la

ck
sc

h
o
le

s
b
o
d
y
tr

a
ck

ca
n
n
e
a
l

d
e
d
u
p

fa
ce

si
m

fe
rr

e
t

fl
u
id

a
n
im

a
te

fr
e
q
m

in
e

ra
y
tr

a
ce

st
re

a
m

cl
u
st

e
r

sw
a
p
ti

o
n
s

v
ip

s
x
2

6
4

a
v
ro

ra
b
a
ti

k
e
cl

ip
se fo
p h
2

jy
th

o
n

lu
in

d
e
x

lu
se

a
rc

h
p
m

d
su

n
fl
o
w

to
m

ca
t

tr
a
d
e
b
e
a
n
s

tr
a
d
e
so

a
p

x
a
la

n
4

2
9

.m
cf

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l
e
sl

ie
3

d
4

5
0

.s
o
p
le

x
4

5
3

.p
o
v
ra

y
4

5
4

.c
a
lc

u
lix

4
5

9
.G

e
m

sF
D

T
D

4
6

2
.l
ib

q
u
a
n
tu

m
4

7
0

.l
b
m

4
7

1
.o

m
n
e
tp

p
4

7
3

.a
st

a
r

4
8

2
.s

p
h
in

x
3

P
a
ra

D
e
co

d
e
r

b
ro

w
se

r_
a
n
im

e
cc

b
e
n
ch

g
5

0
0

_c
sr

st
e
n
ci

lp
ro

b
e

st
r_

u
n
ca

ch
e
d

blackscholes
bodytrack

canneal
dedup

facesim
ferret

fluidanimate
freqmine
raytrace

streamcluster
swaptions

vips
x264

avrora
batik

eclipse
fop
h2

jython
luindex

lusearch
pmd

sunflow
tomcat

tradebeans
tradesoap

xalan
429.mcf

436.cactusADM
437.leslie3d
450.soplex
453.povray
454.calculix

459.GemsFDTD
462.libquantum

470.lbm
471.omnetpp

473.astar
482.sphinx3
ParaDecoder

browser_anime
ccbench

g500_csr
stencilprobe

str_uncached

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

R
e
la

ti
v
e
 E

x
e
cu

ti
o
n
 T

im
e

P
A

R
S
E
C

D
A

C
A

P
O

S
P
E
C

M
IC

R
O

B

PARSEC DACAPO SPEC MICROB

Figure 8: Normalized execution time of the foreground appli-
cation (X-axis), when run concurrently with a back-
ground application (Y-axis).

2 active HTs. For example, canneal’s execution time when
running with streamcluster in the background increases
29% (dark color), while the execution time of streamcluster
is affected much less (8.3%, bright color) when running with
canneal in the background. It is important to note that these
relationships can be asymmetric.

Some applications are not affected when sharing the ma-
chine with a background application. This is the case for
22 out of 45 applications, which are affected less than 2.5%
on average. The performance of the other applications is
more sensitive to contention for the shared hardware resources.
SPEC CPU 2006 and the additional parallel applications are
generally more contention sensitive, since these benchmarks
are more affected when running together with a background
application, and also affect the performance of foreground
applications from all suites if run in the background. The
opposite situation occurs with DaCapo benchmarks, which
only slightly affect other foreground applications. The ap-
plications that suffer most from sharing (average slowdown
over 10%) are canneal, lusearch, 471.omnetpp, ParaDecoder,
browser_animation and stream_uncached.

Using the heat map, we can detect aggressor bench-
marks that more strongly affect foreground applications’
performance. There is one aggressor application in PAR-
SEC (streamcluster), none in DaCapo, 5 in SPEC
CPU 2006 (437.leslie, 450.soplex, 459.gemsFDTD,
462.libquantum, and 470.lbm), and all the new applica-
tions and microbenchmarks except ccbench. The average
slowdown for the foreground application is over 10% on aver-
age when running against these benchmarks.
5.2. Mitigating Degradation with Partitioning

We consider three cache partitioning policies in this section.
As evaluated above, the baseline strategy is to allow both
applications to share the entire cache (shared). The other
two strategies are to statically partition the cache between
the two apps, in one case splitting the LLC evenly down the

8

middle (fair), and in the second case giving each application
some uneven allocation (biased). We evaluate all possible
biased allocations and report results for the one that is best on
average, which is always one of the allocations determined to
be optimal when the foreground application is run alone.

Figure 9 presents the relative effectiveness of these three
strategies at preserving the performance of the cluster-
representative applications. We run two applications simul-
taneously, each with 4 hyperthreads on two cores. The fore-
ground application’s performance is measured, while the sec-
ond application is run continuously in the background. All
values are normalized to the execution time of the foreground
application running in the shared case. For some foreground
applications (C3, C5, C6), less than 5% degradation is present
for the shared case, indicating their limited sensitivity. Thus,
the improvement provided by partitioning is minor. For some
applications pairs, degradation is somewhat or completely
mitigated by biased partitioning, but not mitigated by fair
partitioning, indicating that small allocations damage perfor-
mance, while large allocations provide sufficient capacity and
protection. For some applications pairs, degradation is not
mitigated by any partitioning, indicating that the applications
are contending for shared resources other than cache capacity.

The fact that degradation remains present in some cases,
even though we have sequestered the applications on disjoint
sets of cores and (in the biased case) provided them with
optimally-sized cache allocations, implies that bandwidth con-
tention on the on-chip ring interconnect or off-chip DRAM
interface is to blame. Prior work [23] has proposed mecha-
nisms to partition such bandwidth resources, but unfortunately
they are not available on extant hardware. While there is little
we can do to mitigate this contention where it exists on our
platform, there are a number of points where energy optimiza-
tion through consolidation is still possible.
5.3. Energy Savings of Consolidation

Assuming degradation of the foreground application can be
managed acceptably, and assuming the foreground application
can afford to lose some resources, there is an opportunity to
save energy. Figure 10 shows the possible energy savings as
measured by running each of the applications once, consol-
idated with different partitioning strategies, as compared to
running the applications once in a time-multiplexed way. This
plot uses the optimal allocation of cores and cache capacity
for each benchmark pair and scheduling policy.

Moderate energy savings are possible, especially when con-
sidering the fact that the best possible reduction over sequen-
tially running two applications with equal running time is
50%.

However, note that the specific partitioning strategy does
not have a significant impact for most application pairs. Naive
sharing suffices in most cases. The primary exception is
GEMS-FDTD running with fop, dedup and batik, and even
in this case the fair split performs as well as the best biased
allocation.

C
1

+
C

1
C

1
+

C
2

C
1

+
C

3
C

1
+

C
4

C
1

+
C

5
C

1
+

C
6

C
2

+
C

1
C

2
+

C
2

C
2

+
C

3
C

2
+

C
4

C
2

+
C

5
C

2
+

C
6

C
3

+
C

1
C

3
+

C
2

C
3

+
C

3
C

3
+

C
4

C
3

+
C

5
C

3
+

C
6

C
4

+
C

1
C

4
+

C
2

C
4

+
C

3
C

4
+

C
4

C
4

+
C

5
C

4
+

C
6

C
5

+
C

1
C

5
+

C
2

C
5

+
C

3
C

5
+

C
4

C
5

+
C

5
C

5
+

C
6

C
6

+
C

1
C

6
+

C
2

C
6

+
C

3
C

6
+

C
4

C
6

+
C

5
C

6
+

C
6

A
v
e
ra

g
e

0.6

0.8

1.0

1.2

1.4

R
e
l.
 E

x
e
cu

ti
o
n
T
im

e

fair

biased

Figure 9: Effect of different partitioning strategies on a fore-
ground application in the presence of different,
continuously-running background applications.

('
C

1
',
 '
C

1
')

('
C

1
',
 '
C

2
')

('
C

1
',
 '
C

3
')

('
C

1
',
 '
C

4
')

('
C

1
',
 '
C

5
')

('
C

1
',
 '
C

6
')

('
C

2
',
 '
C

2
')

('
C

2
',
 '
C

3
')

('
C

2
',
 '
C

4
')

('
C

2
',
 '
C

5
')

('
C

2
',
 '
C

6
')

('
C

3
',
 '
C

3
')

('
C

3
',
 '
C

4
')

('
C

3
',
 '
C

5
')

('
C

3
',
 '
C

6
')

('
C

4
',
 '
C

4
')

('
C

4
',
 '
C

5
')

('
C

4
',
 '
C

6
')

('
C

5
',
 '
C

5
')

('
C

5
',
 '
C

6
')

('
C

6
',
 '
C

6
')

A
v
e
ra

g
e0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
l.
 E

n
e
rg

y

Sharing Degradation

shared

fair

biased

Figure 10: Socket and wall energy values when running with
a shared, evenly and optimally partitioned LLC nor-
malized to the applications running sequentially on
the whole machine

Figure 11 shows the weighted speedup of the application
pairs running together with different partitioning strategies as
compared to each running alone. The speedup results indicate
that many schedules save energy through spatial multiplexing
even though the applications themselves are slowed down.

We have seen the potential for consolidation, but found that
the ideal static partitioning is generally not far from either the
naive fair partitioning case or the naive shared case. Even an
oracular static capacity allocator seems ineffective at squeez-
ing in extra background utilization. However, such an optimal
static allocation still cannot take into account phase-based be-
havior of the applications. We now present our implementation

9

('
C

1
',
 '
C

1
')

('
C

1
',
 '
C

2
')

('
C

1
',
 '
C

3
')

('
C

1
',
 '
C

4
')

('
C

1
',
 '
C

5
')

('
C

1
',
 '
C

6
')

('
C

2
',
 '
C

2
')

('
C

2
',
 '
C

3
')

('
C

2
',
 '
C

4
')

('
C

2
',
 '
C

5
')

('
C

2
',
 '
C

6
')

('
C

3
',
 '
C

3
')

('
C

3
',
 '
C

4
')

('
C

3
',
 '
C

5
')

('
C

3
',
 '
C

6
')

('
C

4
',
 '
C

4
')

('
C

4
',
 '
C

5
')

('
C

4
',
 '
C

6
')

('
C

5
',
 '
C

5
')

('
C

5
',
 '
C

6
')

('
C

6
',
 '
C

6
')

A
v
e
ra

g
e0.0

0.5

1.0

1.5

2.0

2.5

R
e
l.
 E

T
 S

p
e
e
d
u
p

Sharing Degradation

shared

fair

biased

Figure 11: Relative performance of different partitioning
strategies normalized to applications running se-
quentially on the whole machine.

0 50 100 150 200 250 300 350
Retired Instructions (Billions)

0

20

40

60

80

100

120

140

160

LL
C

 M
is

se
s

P
e
r

K
ilo

 I
n
st

ru
ct

io
n

2 ways
3 ways
4 ways
5 ways

6 ways
7 ways
8 ways
9 ways

10 ways
11 ways
12 ways
Dynamic

Figure 12: 429.mcf LLC MPKI phase changes with different
static and dynamic LLC allocations.

a utility-based policy for controlling a dynamic cache capac-
ity allocation framework to further maximize consolidation
effectiveness while mitigating performance penalties.
5.4. Dynamic Cache Reallocation for Background Appli-

cation Throughput
In the previous section we focused on the energy saved in

a scenario where we have a finite set of tasks to complete
as quickly as possible, such as might be encountered on a
mobile device. However, in a cloud computing environment,
the significant capital investment in datacenter hardware leads
cloud providers to attempt to utilize all machines as much as
possible. Thus, the objective is to maximize the throughput of
background tasks on underutilized hardware without damaging
foreground application performance.

Applications often have phased behavior with very different
resource requirements during each phase. Figure 12 shows
the number of LLC misses per kilo-instruction under differ-

Algorithm 5.1: PHASE DETECTION ALGORITHM()

if not new_phase {
if (|avg_MPKI-current_MPKI|>MPKI_THR1) {
new_phase=1;
return 2;

}
}
else if (|avg_MPKI-current_MPKI|<MPKI_THR2)
new_phase = 0;

return new_phase;

Algorithm 5.2: DYNAMIC CACHE PARTITIONING ALGORITHM()

if (phase_det()==2) {
phase_starts=1;
set_cache_to_6MB(fg)

}
else if (phase_det()==0 and phase_starts==1) {
if (|last_MPKI-current_MPKI |< MPKI_THR3) {
if (cache_allocated > 1MB)
allocate_less_cache(fg)

else phase_starts=0; /* Keep 1MB */
}
else {
if (cache_allocated < 6MB)
allocate_more_cache(fg) /* Keep previous allocation */

phase_starts=0;
}

}
last_MPKI = current_MPKI;

ent cache allocations for 429.mcf. This application has five
phases with low and high LLC MPKIs. In phases with high
LLC MPKI, the LLC allocation has a significant impact in
the performance of the application. In these phases, 429.mcf
requires 4.5 MB (9 ways) to reach 95% of its maximum per-
formance, while in the other phases, only 1.5 MB (3 ways) are
required. In general, applications present a wide range in the
number of phases and the LLC sensitivity of these phases.

Furthermore, while we have demonstrated a methodology
for determining what static cache capacity allocations pre-
serve performance, doing this offline analysis for all possible
foreground applications is unlikely to be feasible in practice.
These two facts motivate the use of a dynamic mechanism that
changes resource allocations according to these requirements.
We now evaluate such a mechanism in terms of its ability to
provide improved background application throughput over a
static allocation scheme.

To enable a dynamic mechanism that adapts to the require-
ments of the foreground application, we have created a soft-
ware framework to monitor the behavior of the foreground
application and respond to phase changes within that applica-
tion. Since the only resource that we can directly control at
runtime is the cache capacity allocation, the metric of most
relevance is the number of LLC misses. Consequently, the
framework detects phase changes by examining the change
in LLC misses per kilo-instruction and reacts to changes in
phases by readjusting the cache allocation. Algorithm 5.1
shows the pseudocode of this phase detection mechanism.
Phase changes are detected every 0.1 seconds.

Specifically, when the foreground application begins run-
ning, or whenever the framework detects a phase change, the
framework gives the foreground application as much cache
as possible. Then, the framework gradually reduces the fore-

10

Figure 13: Summary of improvements to rate of background
task completion compared to the static cache allo-
cation with optimal foreground application perfor-
mance.

ground LLC allocation until a bad performance effect is ob-
served (misses go up). The background application(s) are
given the remaining resources. The framework directly con-
trols the cache allocation of each application by making use
of specific hardware mechanisms to partition the LLC at way
granularity. On a reallocation, there is no flushing of data
since the partitioning mechanism only affects future evicted
cache lines [32]. Algorithm 5.2 shows the pseudocode for this
cache partitioning mechanism.

We must set the thresholds for MPKI derivatives correctly
to detect phases and too-small allocations. For applications
with a rapid flutter of MPKI (relative to the time it takes to
slowly reduce allocation size) the final LLC allocation might
be unnecessarily large. Data remaining unevicted in deallo-
cated ways might let allocation size shrink too much, since
the performance effects of the shrinkage are masked. In our
case, we performed a sensitivity study that lead to the selected
parameters: MPKI_T HR1 = 0.02, MPKI_T HR2 = 0.02, and
MPKI_T HR3 = 0.05, but found that the below results are
largely insensitive to small parameter changes.

Across our benchmarks, we find that the framework is able
to achieve within 1% of the best performance of the best static
allocation. Given that the performance is a good match to the
best static allocation, we must determine how the extra cache
capacity made available by the dynamic mechanism to the
background tasks during phases of the foreground application
with low cache utility improves background task bandwidth.
Figure 13 shows that in some cases significant throughput
increases (22% on average) are made by this resource avail-
ability. These bandwidth improvements are relative to the
smallest static allocation that is within 1% of overall optimal
performance. However, for many cases, the limited number
of phases in the foreground application or its high sensitivity
to LLC allocation size does not allow for additional improve-
ments from deploying the dynamic mechanism as compared to
a near-optimal static policy. However, in the right context, the
dyanmic partitioning mechanism can make application consol-

idation onto hardware with a shared LLC far more effective.
6. Related Work

Several groups have studied the impact of workload consoli-
dation in shared caches [35,36,38] for datacenter applications.
They do not explore hardware solutions such as cache parti-
tioning or client workloads.

Several authors have evaluated way-partitioned caches with
multiprogrammed workloads [16, 20, 28, 32] including using
partitioning to provide a minimum performance to applica-
tions [20, 25]. However, these proposals were all evaluated on
a simulator, and all but [20] used sequential applications —
leading to different conclusions.

Other authors make use of page coloring to partition the
LLC by sets [10, 24, 33]. Cho and Lin [10] experiment with
page coloring on a simulator to reduce access latency in dis-
tributed caches. Tam et al. [33] map pages into each core’s
private color using static decisions. They implement it us-
ing Linux and POWER5. Lin et al. [24] evaluate a dynamic
scheme using page coloring on an Intel Xeon 5160 processor.
However, there is a huge performance overhead to change
the color of a page. Another challenge is that the number
of available partitions is a function of page size, so increas-
ing page size can make page coloring ineffective or impossi-
ble [10, 24, 33]. The experiments on real machines use only
2 running threads and make decisions only every several sec-
onds. In contrast, our approach can change LLC partitions
much faster and with minimal performance overhead.

Others have proposed hardware support to obtain the miss
rate, IPC curves or hardware utilization information [8,25,28]
to provide QoS. These approaches require hardware modifica-
tion and will not work on current processors. Chanda et al. [9]
explored on-line methods to extrapolate these curves, but their
approach has significant complexity and overhead. Tam et
al. [34] use of performance counters on POWER5 to predict
miss curves for different page coloring assignments. They
use a stack simulator and an LLC address trace to obtain the
miss curve and statically assign colors. Others have measured
LLC misses to identify thrashing applications [37] or predict
contention [13] enabling the scheduler to pick co-running
applications with more affinity. Another approach uses hard-
ware thread priorities to rate limit threads [7]. However, the
approach only works for SMT processors and non-memory-
bound applications. LLC misses can also be used to change
the replacement policy of the LLC to partition the cache at
finer granularity [29].
7. Conclusion

In this study we found that modern hardware and applica-
tions offer possibilities to increase energy efficiency through
consolidation for foreground and background applications. By
measuring performance and energy on a current micropro-
cessor with experimental support for cache partitioning, we
were able to cluster several benchmark suites based on their re-
source utilization. Unlike previous studies, we did not observe
performance knees as we increase the allocated LLC capacity.

11

We found that, for all classes of applications, pinning threads
to cores and sharing the LLC provides speedups and energy
savings over running applications alone in sequence, and in
many cases is effective at preserving foreground application
performance. The 6 MB LLC is typically enough for two ap-
plications to share without degradation, irrespective of cache
partitioning policy. For 16% of the cases, (almost exclusively
those running with a low scalability, sensitive application), un-
even cache partitioning can provide significant speedups, 20%
on average. We implemented a simple dynamic mechanism
that achieves performance within 1% of the optimal uneven
allocation. Overall, we find that while naive LLC sharing can
often be effective, the combination of a cache replacement
mechanism that enables partitioning along with a simple ad-
justment algorithm can provide significant performance and
energy improvements in certain cases. We expect the effec-
tiveness of our dynamic partitioning technique to increase as
workloads become more parallel and multiprogrammed, but
for it to be less effective on machines with larger cache hierar-
chies or without support for partitioning other shared hardware
resources.
References
[1] Apple Inc. iOS App Programming Guide. http://developer.

apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/
iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.
pdf.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A
view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[3] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers,
2009.

[4] S. Beamer, K. Asanovic, and D. A. Patterson. Searching for a parent
instead of fighting over children: A fast breadth-first search implemen-
tation for graph500. Technical Report UCB/EECS-2011-117, EECS
Department, University of California, Berkeley, Nov 2011.

[5] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prince-
ton University, January 2011.

[6] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA, pages 169–190, 2006.

[7] C. Boneti, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, C.-Y. Cher,
and M. Valero. Software-controlled priority characterization of power5
processor. In ISCA, pages 415–426, 2008.

[8] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez,
A. Ramirez, and M. Valero. Predictable Performance in SMT Pro-
cessors: Synergy between the OS and SMTs. IEEE Trans. Computers,
55(7):785–799, 2006.

[9] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In HPCA, pages
340 – 351, 2005.

[10] S. Cho and L. Jin. Managing distributed, shared l2 caches through
os-level page allocation. In MICRO, pages 455–468, 2006.

[11] S. Eranian. Perfmon2: a flexible performance monitoring interface for
linux. In Ottawa Linux Symposium, page 269–288, 2006.

[12] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKinley.
Looking back and looking forward: power, performance, and upheaval.
Commun. ACM, 55(7):105–114, July 2012.

[13] A. Fedorova, S. Blagodurov, and S. Zhuravlev. Managing contention for
shared resources on multicore processors. Commun. ACM, 53(2):49–57,
2010.

[14] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi.
Clearing the clouds: a study of emerging scale-out workloads on modern
hardware. In ASPLOS, pages 37–48, 2012.

[15] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the scalabil-
ity of garbage collectors on many cores. In Workshop on Programming
Languages and Operating Systems, pages 1–5, 2011.

[16] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing
quality of service in chip multi-processors. In MICRO, 2007.

[17] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quanti-
tative Approach (5. ed.). Morgan Kaufmann, 2012.

[18] Intel Corp. Intel 64 and ia-32 architectures optimization reference
manual, June 2011.

[19] Intel Corp. Intel 64 and ia-32 architectures software developer’s manual,
March 2012.

[20] R. R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Soli-
hin, L. R. Hsu, and S. K. Reinhardt. QoS policies and architecture for
cache/memory in CMP platforms. In SIGMETRICS, pages 25–36, 2007.

[21] A. Jaleel. Memory characterization of workloads using instrumentation-
driven simulation – a pin-based memory characterization of the spec
cpu2000 and spec cpu2006 benchmark suites. Technical report, VSSAD,
Intel Corporation, 2007.

[22] S. Kamil. Stencil probe, 2012. http://www.cs.berkeley.edu/
~skamil/projects/stencilprobe/.

[23] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized frames
for guaranteed quality-of-service in on-chip networks. In Proceedings
of the 35th Annual International Symposium on Computer Architecture,
ISCA ’08, pages 89–100, Washington, DC, USA, 2008. IEEE Computer
Society.

[24] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
insights into multicore cache partitioning: Bridging the gap between
simulation and real systems. In HPCA, pages 367 –378, feb. 2008.

[25] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero.
FlexDCP: a QoS framework for CMP architectures. SIGOPS Oper. Syst.
Rev., 43(2):86–96, 2009.

[26] Perfmon2 webpage. perfmon2.sourceforge.net/.
[27] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and

application balance in the spec cpu2006 benchmark suite. In ISCA, pages
412–423, 2007.

[28] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches. In MICRO, pages 423–432, 2006.

[29] D. Sanchez and C. Kozyrakis. Vantage: Scalable and Efficient Fine-
Grain Cache Partitioning. In ISCA), June 2011.

[30] E. Schurman and J. Brutlag. The user and business impact of server
delays, additional bytes, and http chunking in web search. In Velocity,
2009.

[31] Standard Performance Evaluation Corporation. SPEC CPU 2006 bench-
mark suite. http://www.spec.org.

[32] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory Monitoring
Scheme for Memory-Aware Scheduling and Partitioning. In HPCA,
pages 117–128, 2002.

[33] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared l2
caches on multicore systems in software. In WIOSCA, 2007.

[34] D. K. Tam, R. Azimi, L. Soares, and M. Stumm. Rapidmrc: approximat-
ing l2 miss rate curves on commodity systems for online optimizations.
In ASPLOS, pages 121–132, 2009.

[35] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The
impact of memory subsystem resource sharing on datacenter applications.
In ISCA, pages 283–294, 2011.

[36] C.-J. Wu and M. Martonosi. Characterization and dynamic mitigation
of intra-application cache interference. In ISPASS, pages 2–11, 2011.

[37] Y. Xie and G. H. Loh. Scalable shared-cache management by containing
thrashing workloads. In HiPEAC, pages 262–276, 2010.

[38] E. Z. Zhang, Y. Jiang, and X. Shen. Does cache sharing on modern cmp
matter to the performance of contemporary multithreaded programs? In
PPoPP, pages 203–212, 2010.

12

http://developer.apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://www.cs.berkeley.edu/~skamil/projects/stencilprobe/
http://www.cs.berkeley.edu/~skamil/projects/stencilprobe/
http://www.spec.org

	Introduction
	Experimental Methodology
	Platform Configuration
	Performance and Energy Measurement
	Description of Workloads

	Performance Characterization
	Thread Scalability
	Last-Level Cache Sensitivity
	Prefetcher Sensitivity
	On-Chip LLC and DRAM Bandwidth Sensitivity
	Clustering Analysis

	Energy-Performance Tradeoffs
	Multiprogram Analyses
	Performance Degradation in a Shared Cache
	Mitigating Degradation with Partitioning
	Energy Savings of Consolidation
	Dynamic Cache Reallocation for Background Application Throughput

	Related Work
	Conclusion

