
GSRC Annual
Symposium

September 28,
2010

through
 October 1, 2010

David Sheffield, Michael Anderson, Kurt Keutzer

•  We suspect that the problems commonly
solved using computers can be classified as
a small number of distinct computations

•  e.g. matrix multiply, sorting, convolution,
etc.

•  We are interested in finding the
distinguishing characteristics of these
computations

•  Automatically detecting these patterns in
software would allow us to suggest
optimizations or libraries to the programmer.
(An intelligent profiler)

•  We could also predict how an arbitrary
program would perform on a number of
different architectures based on its
composition of computations

Motivation

Computational Motifs

Machine-Level Features

Decision Tree Classifier

1. Sort does not use floating-point so very few FP
Multiplies is a good indicator

2. Dense Linear Algebra tends to load directly and
sequentially from memory

3. This is overfitting slightly. A few outliers in the
Dense Linear Algebra training set (Givens Rotations)
had many indirect loads

4. This reflects the fact that sparse matrix-vector
multiply tends to accumulate results in registers,
while structured grid computations write continuously
to memory

1

2

3

4

•  Feature vector:
•  Indirect Loads
•  Indirect Stores
•  Loads
•  Stores
•  Floating-point add/sub
•  Floating-point
multiplies
•  Floating-point divides
•  Integer instructions

•  Assembly Code

 load r1, mem[r2]
 mulsd xmm0, xmm1
 addsd xmm2, dmm0
 load r3, mem[r1]
 . . .

•  Arrow indicates an indirect
load, common in sparse
codes

•  13 Computational Patterns were identified
by a group of researchers from UC
Berkeley and LLNL in 2006 [Asanovic et al].

•  We try to classify:
•  Dense Linear Algebra

•  Sparse Linear Algebra

•  Structured Grid

•  Sort

•  Feature Collection
•  Used Intel Software
Development Emulator (SDE)
•  Picked the top “basic blocks”
of assembly instructions
•  Extracted features by parsing
and simulating the assembly
•  Compiled 42 training examples

Next Steps
•  We plan on modifying GCC or LLVM
to gather feature vectors

• The compiler to insert counters in
order to profile interesting events
(such as indirect loads)

• Similar in principle to traditional
profilers such as gprof

• Consider adding data access
patterns, including data structure
shape
• Train classifier with known examples
such as SPEC2006

•  LLNL has a computational pattern
benchmark suite too.

• Use RPM package manager to rebuild
complete Linux userland with pattern
profiling code

• Detect computational patterns in
the “wild”

