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ABSTRACT
We describe an FPGA-based datacenter network simulator
for researchers to rapidly experiment with O(10,000) node
datacenter network architectures. Our simulation approach
configures the FPGA hardware to implement abstract mod-
els of key datacenter building blocks, including all levels of
switches and servers. We model servers using a complete
SPARC v8 ISA implementation, enabling each node to run
real node software, such as LAMP and Hadoop. Our ini-
tial implementation simulates a 64-server system and has
successfully reproduced the TCP incast throughput collapse
problem. When running a modern parallel benchmark, sim-
ulation performance is two-orders of magnitude faster than
a popular full-system software simulator. We plan to scale
up our testbed to run on multiple BEE3 FPGA boards,
where each board is capable of simulating 1500 servers with
switches.

1. INTRODUCTION
In recent years, datacenters have been growing rapidly to
scales of 10,000 to 100,000 servers [18]. Many key technolo-
gies make such incredible scaling possible, including modu-
larized container-based datacenter construction and server
virtualization. Traditionally, datacenter networks employ
a fat-tree-like three-tier hierarchy containing thousands of
switches at all levels: rack level, aggregate level, and core
level [1].

As observed in [13], the network infrastructure is one of the
most vital optimizations in a datacenter. First, network-
ing infrastructure has a significant impact on server utiliza-
tion, which is an important factor in datacenter power con-
sumption. Second, network infrastructure is crucial for sup-
porting data intensive Map-Reduce jobs. Finally, network
infrastructure accounts for 18% of the monthly datacenter
costs, which is the third largest contributing factor. In ad-
dition, existing large commercial switches and routers com-
mand very healthy margins, despite being relatively unreli-
able [26]. Sometimes, correlated failures are found in repli-
cated million-dollar units [26]. Therefore, many researchers
have proposed novel datacenter network architectures [14,
15, 17, 22, 25, 26] with most of them focusing on new switch
designs. There are also several new network products em-
phasizing low latency and simple switch designs [3, 4].

When comparing these new network architectures, we found
a wide variety of design choices in almost every aspect of the
design space, such as switch designs, network topology, pro-

tocols, and applications. For example, there is an ongoing
debate between low-radix and high-radix switch design. We
believe these basic disagreements about fundamental design
decisions are due to the different observations and assump-
tions taken from various existing datacenter infrastructures
and applications, and the lack of a sound methodology to
evaluate new options. Most proposed designs have only
been tested with a very small testbed running unrealistic mi-
crobenchmarks, as it is very difficult to evaluate network ar-
chitecture innovations at scale without first building a large
datacenter.

To address the above issue, we propose using Field-Program-
mable Gate Arrays (FPGAs) to build a reconfigurable sim-
ulation testbed at the scale of O(10,000) nodes. Each node
in the testbed is capable of running real datacenter applica-
tions. Furthermore, network elements in our testbed pro-
vide detailed visibility so that we can examine the com-
plex network behavior that administrators see when deploy-
ing equivalently scaled datacenter software. We built the
testbed on top of a cost-efficient FPGA-based full-system
manycore simulator, RAMP Gold [24]. Instead of mapping
the real target hardware directly, we build several abstracted
models of key datacenter components and compose them
together in FPGAs. We can then construct a 10,000-node
system from a rack of multi-FPGA boards, e.g., the BEE3
[10] system. To the best of our knowledge, our approach
will probably be the first to simulate datacenter hardware
along with real software at such a scale. The testbed also
provides an excellent environment to quantitatively analyze
and compare existing network architecture proposals.

We show that although the simulation performance is slower
than prototyping a datacenter using real hardware, abstract
FPGA models allow flexible parameterization and are still
two orders of magnitude faster than software simulators at
the equivalent level of detail. As a proof of concept, we
built a prototype of our simulator in a single Xilinx Virtex 5
LX110 FPGA simulating 64 servers connecting to a 64-port
rack switch. Employing this testbed, we have successfully
reproduced the TCP Incast throughput collapse effect [27],
which occurs in real datacenters. We also show the impor-
tance of simulating real node software when studying the
TCP Incast problem.



Network Architecture Testbed Scale Workload

Policy away switching layer [17] Click software router Single switch Microbenchmark
DCell [16] Commercial hardware ∼20 nodes Synthetic workload

Portland (v1) [6] Virtual machine+commercial switch 20 switches+16 servers Microbenchmark
Portland (v2) [22] Virtual machine+NetFPGA 20 switches+16 servers Synthetic workload

BCube [15] Commercial hardware+NetFPGA 8 switches+16 servers Microbenchmark
VL2 [14] Commercial hardware 10 servers+10 switches Microbenchmark

Thacker’s container network [26] Prototyping with FPGA boards - -

Table 1: Datacenter network architecture proposals and their evaluations

2. EVALUATING DATACENTER NETWORKS
We begin by identifying the key issues in evaluating data-
center networks. Several recent novel network architectures
employ a simple, low-latency, supercomputer-like intercon-
nect. For example, the Sun Infiniband datacenter switch [3]
has a 300 ns port-port latency as opposed to the 7–8 µs of
common Gigabit Ethernet switches. As a result, evaluating
datacenter network architectures really requires simulating
a computer system with the following three features.

1. Scale: Datacenters contains O(10,000) servers or more.

2. Performance: Large datacenter switches have 48/96
ports, and are massively parallel. Each port has 1–4K
flow tables and several input/output packet buffers. In
the worst case, there are ∼200 concurrent events every
clock cycle.

3. Accuracy : A datacenter network operates at nanosec-
ond time scales. For example, transmitting a 64-byte
packet on a 10Gbps link takes only ∼50 ns, which is
comparable to DRAM access time. This precision im-
plies many fine-grained synchronizations during simu-
lation if models are to be accurate.

Table 1 summarizes evaluation methodologies in recent net-
work design research. Clearly, the biggest issue is evaluation
scale. Although a mid-size datacenter contains tens of thou-
sands of servers and thousands of switches, recent evalua-
tions have been limited to relatively tiny testbeds with less
than 100 servers and 10–20 switches. Small-scale networks
are usually quite understandable, but results obtained may
not be predictive of systems deployed at large scale.

For workloads, most evaluations run synthetic programs,
microbenchmarks, or even pattern generators, while real
datacenter workloads include web search, email, and Map-
Reduce jobs. In large companies, like Google and Microsoft,
trace-driven simulation is often used, due to the abundance
of production traces. But production traces are collected on
existing systems with drastically different network architec-
tures. They cannot capture the effects of timing-dependent
execution on a new proposed architecture.

Finally, many evaluations make use of existing commercial
off-the-shelf switches. The architectural details of these com-
mercial products are proprietary, with poor documentation
of existing structure and little opportunity to change param-
eters such as link speed and switch buffer configurations,
which may have significant impact on fundamental design
decisions.

2.1 The Potential of FPGA-based Simulation
As the RAMP [28] project observed, FPGAs have become
a promising vehicle for architectural investigation of mas-
sively parallel computer systems. We propose building a
datacenter simulator based on the RAMP Gold FPGA sim-
ulator [24], to model up to O(10,000) nodes and O(1,000)
switches running real datacenter software. Figure 1 ab-
stractly compares our RAMP-based approach to four exist-
ing approaches in terms of experiment scale and accuracy.
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Figure 1: RAMP vs. Existing Evaluations

Prototyping has the highest accuracy, but it very expen-
sive to scale beyond O(100) nodes. To increase the num-
ber of tested end-hosts, many evaluations [22] utilize vir-
tual machines (VMs) along with programmable network de-
vices, such as NetFPGA [21]. However, multiple VMs time-
multiplex on a single physical machine and share the same
switch port resource. Hence, true concurrency and switch
timing is not faithfully modeled. In addition, it is still very
expensive to reach the scale of O(1,000) in practice.

To accurately model architectural details, computer archi-
tects often use full-system software timing simulators, for
example M5 [8] and Simics [20]. Programs running on these
simulators are hundreds of thousands of times slower than
running on a real system. To keep simulation time reason-
able, such simulators are rarely used to simulate more than
a few dozen nodes.

Recently, cloud computing platforms such as Amazon EC2
offer a pay-per-use service to enable users to share their dat-



acenter infrastructure at an O(1,000) scale. Researchers can
rapidly deploy a functional-only testbed for network man-
agement and control plane studies. Such services, however,
provide almost no visibility into the network and have no
mechanism for accurately experimenting with new switch
architectures.

3. RAMP GOLD FOR DATACENTER SIM-
ULATION

In this section, we first review the RAMP Gold CPU sim-
ulation model before describing how we extend it to model
a complete datacenter including switches, and then provide
predictions of scaled-up simulator performance.

3.1 RAMP Gold
RAMP Gold is an economical FPGA-based cycle-accurate
full-system architecture simulator that allows rapid early
design-space exploration of manycore systems. RAMP Gold
employs many FPGA-friendly optimizations and has high
simulation throughput. RAMP Gold supports the full 32-
bit SPARC v8 ISA in hardware, including floating-point and
precise exceptions. It also models sufficient hardware to run
an operating system including MMUs, timers, and interrupt
controllers. Currently, we can boot the Linux 2.6.21 kernel
and a manycore research OS[19].

We term the computer system being simulated the target,
and the FPGA environment running the simulation the host.
RAMP Gold uses the following three key techniques to sim-
ulate a large number of cores efficiently:

1. Abstracted Models: A full RTL implementation of a
target system ensures precise cycle-accurate timing,
but it requires considerable effort to implement the
hardware of a full-fledged datacenter in FPGAs. In
addition, the intended new switch implementations are
usually not known during the early design stage. In-
stead of full RTL, we employ high-level abstract mod-
els that greatly reduce both model construction effort
and FPGA resource requirements.

2. Decoupled functional/timing models RAMP Gold de-
couples the modeling of target timing and functional-
ity. For example, in server modeling, the functional
model is responsible for executing the target software
correctly and maintaining architectural state, while
the timing model determines how long an instruction
takes to execute in the target machine. Decoupling
simplifies the FPGA mapping of the functional model
and allows complex operations to take multiple FPGA
cycles. It also improves modeling flexibility and model
reuse. For instance, we can use the same switch func-
tional model to simulate both 10Gbps switches and
100Gbps switches, by changing only the timing model.

3. Multithreading Since we are simulating a large number
of cores, RAMP Gold applies multithreading to both
the functional and timing models. Instead of replicat-
ing hardware models to model multiple instances in
the target, we use multiple hardware model threads
running in a single host model to simulate different
target cores. Multithreading significantly improves the

FPGA resource utilization and hides simulation laten-
cies, such as those from host DRAM access and timing
model synchronization. The timing model correctly
models the true concurrency in the target, indepen-
dent of the time-multiplexing effect of multithreading
in the host simulation model.

The prototype of RAMP Gold runs on a single Xilinx Virtex-
5 LX110T FPGA, simulating a 64-core multiprocessor tar-
get with a detailed memory timing model. We ran six pro-
grams from a popular parallel benchmark, PARSEC [7], on
a research OS. Figure 2 shows the geometric mean of the
simulation speedup on RAMP Gold compared to a popu-
lar software architecture simulator, Simics [20], as we scale
the number of cores and the level of detail. We configure
the software simulator with three timing models of differ-
ent levels of detail. Under the 64-core configuration with
the most accurate timing model, RAMP Gold is 263x faster
than Simics. Note that at this accuracy level Simics per-
formance degrades super-linearly with the number of cores
simulated: 64 cores is almost 40x slower than 4 cores.
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Figure 2: RAMP Gold speedup over Simics running
the PARSEC benchmark

3.2 Modeling a Datacenter with RAMP Gold
Our datacenter simulator contains two types of models: node
and switch. The node models a networked server in a dat-
acenter, which talks over some network fabric (e.g. Gigabit
Ethernet) to a switch. We assume each target server exe-
cutes the SPARC v8 ISA, which is simulated with one hard-
ware thread in RAMP Gold. By default, we assign a simple
in-order issue CPU timing model with a fixed CPI for each
target server. The target core frequency is adjustable by
configuring the timing model at runtime, which simulates
scaling of node performance. We can also add more detailed
processor and memory timing models for points of interest.

Similar to the server model, the switch models are also
host-threaded, with decoupled timing and functional mod-
els. Each hardware thread simulates a single target switch
port, while the switch packet buffer is modeled using DRAM.
The model also supports changing architectural parameters—
such as link bandwidth, delays, and switch buffer size—
without time-consuming FPGA resynthesis. The current



switch model simulates a simple output-buffered source-routed
architecture. We plan to add a conventional switch model
soon. We use a ring to physically connect all switches and
node models on one host FPGA, but can model any arbi-
trary target topology.

Each functional/timing model pipeline supports up to 64
hardware threads, simulating 64 target servers. We can
also configure fewer threads per pipeline to improve single-
thread performance. To reach O(10,000) scale, we plan to
put down multiple threaded RAMP Gold pipelines in a rack
of 10 BEE3 boards as shown in Figure 3. Each BEE3 board
has four Xilinx Virtex-5 LX155T FPGAs connected with a
72-bit wide LVDS ring interconnect. Each FPGA supports
16GB of DDR2 memory in two independent channels, re-
sulting in up to 64GB of memory for the whole board. Each
FPGA provides two CX4 ports, which can be used as two
10Gbps Ethernet interfaces to connect multiple boards.

(a) (b)

Figure 3: a) Architecture of a BEE3 board. b) A
rack of six BEE3 boards, each with 4 FPGAs.

On each FPGA, we can fit six pipelines to simulate up to 384
servers. We then can simulate 1,536 servers on one BEE3
board, since there are four FPGAs on each board. The
onboard 64GB DRAM simulates the target memory, with
each simulated node having a share of ∼40 MB.

We are looking at expanding memory capacity by employ-
ing a hybrid memory hierarchy including both DRAM and
flash. Using the BEE3 SLC flash DIMM [11], we can build a
target system with a 32 GB DRAM cache and 256 GB flash
memory on every BEE3.

In terms of the host memory bandwidth utilization, when
running the PARSEC benchmark, one 64-thread pipeline
only uses <15% of the peak bandwidth of a single-channel
DDR2 memory controller. Each BEE3 FPGA has two mem-
ory channels, so it should have sufficient host memory band-
width to support six pipelines.

In terms of FPGA utilization for networking, the switch
models consume trivial resources. Our 64-port output-buffered
switch only takes ∼300 LUTs on a Xilinx Virtex-5 FPGA.
Moreover, novel datacenter switches are much simpler than
traditional designs. Even real prototyping takes only < 10%
of the resources on a midsize Virtex-5 FPGA [12].

Each simulated node in our system runs Debian Linux with

a full Linux 2.6 kernel. LAMP (Linux, Apache, Mysql,
PHP) and Java support is from the binary packages of De-
bian Linux. We plan to run Map-Reduce benchmarks from
Hadoop [5] as well as three-tiered Web 2.0 benchmarks, e.g.
Cloudstone [23]. Since each node is SPARC v8 compatible
and has a full GNU development environment, the platform
is capable of running other datacenter research codes com-
piled from scratch.

3.3 Predicted Simulator Performance
One major datacenter application is running Map-Reduce
jobs, where each job contains the two types of tasks: map
tasks and reduce tasks. According to the production data
from Facebook and Yahoo datacenters [29], the medium map
task length at Facebook and Yahoo is 19 seconds and 26
seconds respectively, while the medium reduce task length
is 231 seconds and 76 seconds respectively. Moreover, small
and short jobs dominate, while there are more map tasks
than reduce tasks. In reality, most tasks will finish sooner
than medium length tasks.

Table 2 shows the simulation time with different number
of hardware threads on RAMP Gold, if we simulate these
medium length tasks till completion. To predict the Map-
Reduce performance, we use the simulator performance data
gathered while running the PARSEC benchmark. Map tasks
can be finished in a few hours, while reduce tasks take longer,
ranging from a few hours to a few days. Using fewer threads
per pipeline gives better performance at the cost of simu-
lating fewer servers. Note the simulation time in Table 2 is
only for a single task. Multiple tasks can run simultaneously,
because the testbed can simulate a large number of servers.
The simulation slowdown compared to a real datacenter is
roughly around 1,000x under the 64-thread configuration.
This is comparable to a software network simulator used
at Google, which has a slowdown of 600× [2] but doesn’t
simulate any node software.

Target System Map Task Reduce Task

Facebook (64 threads/pipeline) 5 hours 64 hours
Yahoo (64 threads/pipeline) 7 hours 21 hours
Facebook (16 threads/pipeline) 1 hours 16 hours
Yahoo (16 threads/pipeline) 2 hours 5 hours

Table 2: Simulation time of a single median length
task on RAMP Gold

In the next section, we present a small case study to show
that simulating the software stack on the server node can be
vital for uncovering network problems.

4. CASE STUDY: REPRODUCING THE TCP
INCAST PROBLEM

As a proof of concept, we use RAMP Gold to study the TCP
Incast throughput collapse problem [27]. The TCP Incast
problem refers to the application-level throughput collapse
that occurs as the number of servers sending data to a client
increases past the ability of an Ethernet switch to buffer
packets. Such a situation is common within a rack, where
multiple clients connecting to the same switch share a single
storage server, such as for NFS servers.
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Figure 4: Mapping the TCP Incast problem to RAMP Gold. a) The target is a 64-server datacenter rack.
b) High-level RAMP Gold models. c) Detailed RAMP Gold models.

Figure 4 illustrates the mapping of the TCP Incast problem
on our FPGA simulation platform. The target system is a
64-node datacenter rack with a single output-buffered layer-
2 gigabit switch. The node model is simulated with a single
64-thread SPARC v8 RAMP Gold pipeline. The NIC and
switch timing models are similar, both computing packet
delays based on the packet length, link speed and queuing
states.

Figure 5 shows the RAMP simulation results compared to
those from the real measurements in [9], when varying the
TCP retransmission time out (RTO). As seen from the graph,
the simulation results differ from the measured data in terms
of absolute values. This difference is mainly because com-
mercial switch architectures are proprietary, so that we lack
the information needed to create an accurate model. Nev-
ertheless, the shapes of the throughput curves are similar.
This similarity suggests that using an abstract switch model
can still successfully reproduce the throughput collapse ef-
fect and the trend with more senders. Moreover, the origi-
nal measurement data contained only up to 16 senders due
to the many practical engineering issues of building a larger
testbed. In contrast, it is very easy to scale using our RAMP
simulation.

In order to show the importance of simulating node soft-
ware, we replace the RPC-like application sending logic with
a simple näıve FSM-based sender to imitate more conven-
tional network evaluations. The FSM-based sender does not
simulate any computation and directly connects to the TCP
protocol stack. Figure 6 shows the receiver throughput of
FSM senders versus normal senders. We configure a 200ms
TCP RTO and 256KB switch port buffer. Illustrated clearly
on the graph, FSM senders cannot reproduce the through-
put collapse, as the throughput gradually recovers with more
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FSM senders. The throughput collapse is also not as signifi-
cant as that of normal senders. In conclusion, the absence of
node software and application logic in simulation may lead
to a very different result.

5. CONCLUSION AND FUTURE WORK
Our initial results show that simulating datacenter network
architecture is not only a networking problem, but also a
computer system problem. Real node software significantly
affects the simulation results even at the rack level. Our
FPGA-based simulation can improve both the scale and
the accuracy of network evaluation. We believe it will be
promising for datacenter-level network experiments, helping
to evaluate novel protocols and software at scale.

Our future work primarily involves developing system func-
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tionality and scaling the testbed to multiple FPGAs. We
also plan to use the testbed to quantitatively analyze pre-
viously proposed datacenter network architectures running
real applications.
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