Implementing Real-Time Partitioned Convolution
Algorithms on Conventional Operating Systems

Eric Battenberg, Rimas Avizienis, David Wessel

ericb, rimas@eecs.berkeley.edu

The Application Non-Uniform Partitioned Convolution Results

Single Partition Size
e Convolution is a DSP operation that is widely e To further improve efficiency, W’___ IHHHHHHIN

used in the audio realm to implement a variety we can increase the partition Hilliie | | ~a—preempive - Optimal
size as we progress through the /

impulse response. Increasing Partition Sizes A

—&—Preemptive - 2 Level

Time Distributed

N
o

=
o
o

of effects (filters, reverberation, etc.)

(o))
o

Number of Instances
o0
o

=O==Time Distributed

1N
o

e When implementing convolution, there is a We can reuse FFTs amongst Ww———r = o | gy
fundamental tradeoff between efficiency and same-size partitions in a e T po I peempvezie | e

16384 32768 65536 131072 262144 524188 16384 32768 65536 131072 262144 524288

latency. Partitioned convolution aims to provide Frequency Delay Line (FDL) m e Respons et sampie i Resonse ength #sample)
° ° ° X Complex .
low latency at a minimal computational cost. / The optimal partitioning fora. TN o CPU utilization vs. o Maximum number of

HR

given IR length is determined Gomprex *@_} impulse response length channels possible

N
o

o

for 16 channels of without missed

. “ g, e . _ . . A in . . d dl . |R| th
Unlform Pa r‘hhgned Canoluhon based auto-tuning algorithm. Frequency Delay Line partitioned convolution eadlines vs. IR leng

using a dynamic programming ‘

Complex

e Direct (time domain) convolution has zero P ve | | .
inherent latency at a cost of O(N?) operations reemptive Implementation

per output sample, where N is the impulse A separate thread is created for each .

response (|R) Iength. DL and assigned a priority Igased on its - | | | -
ength. Shorter FDLs are assigned Preemptive implementation using optimal partitioning

FFT based block convolution has an inherent nigher priorities and will preempt oL TR Sl Bredlies outperforms cooperative implementation in all cases.
onger FDLs as necessary.

latency of N samples at a cost of OIN og N) - ' imi o Cooperative implementation required significantly more
arithmetic operations per output sample. "TW (a highly optimized, cross- P P q 8 y

atform library) is used to perform programmer effort.

FDL 1

Dividing the IR into a series of equally sized FT/IFFT calculations.
partitions, convolving each partition with a Any configuration of FDLs is supported.
delayed version of the input signal, and
summing the results provides a middle ground
between these two extremes.

Conclusions

Reported CPU utilization for a fixed number of instances
suggests that TD 2-level implementation would be able to
sustain more simultaneous instances than PE 2-level

COOperaﬁve |mp|ementaﬁon implementation, but this is not the case.

All processing is done within the context The overhead of context switching is smaller than the
E2 of a single thread. FDL Time-Distributed/Subtask Scheduling Deadiines overhead of partitioning the work associated with multiple

Complex
p Only 2 levels of partitioning (2 FDL sizes) o3 FDLs in a load-balanced manner.
aresupported. FDL2 | PP i bR il i EE b i

L Audio host applications assume that plugins perform their
processing in the context of a single high-priority thread.

The FFTs for the larger FDLs are
subdivided into multiple smaller FFTs by

applying decimation in frequency (DIF). Running multiple plugins that spawn worker threads within
Making these “time-distributed” FFTs comparable in efficiency to FFTW such an application (i.e. IVIax/IVISP) IS Iikely to produce
required hand-tuned assembly code and careful data layout. unpredictable behavior due to OS scheduling decisions.

