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The Application Non-Uniform Partitioned Convolution Results
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Dividing the IR into a series of equally sized FT/IFFT calculations.
partitions, convolving each partition with a Any configuration of FDLs is supported.
delayed version of the input signal, and
summing the results provides a middle ground
between these two extremes.

Conclusions

Reported CPU utilization for a fixed number of instances
suggests that TD 2-level implementation would be able to
sustain more simultaneous instances than PE 2-level

COOperaﬁve |mp|ementaﬁon implementation, but this is not the case.

All processing is done within the context The overhead of context switching is smaller than the
E2 of a single thread. FDL Time-Distributed/Subtask Scheduling Deadiines overhead of partitioning the work associated with multiple
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L Audio host applications assume that plugins perform their
processing in the context of a single high-priority thread.

The FFTs for the larger FDLs are
subdivided into multiple smaller FFTs by

applying decimation in frequency (DIF). Running multiple plugins that spawn worker threads within
Making these “time-distributed” FFTs comparable in efficiency to FFTW such an application (i.e. IVIax/IVISP) IS Iikely to produce
required hand-tuned assembly code and careful data layout. unpredictable behavior due to OS scheduling decisions.




