The Application

e First real-time app in the Par Lab.

e Partitioned Convolution — an efficient

way to do low-latency filtering with a
long impulse response.

Used in convolution reverb for
environment simulation, creative effect
processing, and electronic instrument
creation.

Convolution

Convolution is a way to do linear
filtering using an FIR (finite impulse
response).

Filter length, L, can be > 100,000 (3 sec)

Direct Convolution:
o O(L) complexity

ylnl= Y hlklx[n - k]
k

o Zero delay y —output, x —input, h - filter

Block FFT Convolution:
o Oflog(L)) complexity (5] H=FFT(
o Ldelay X —| FFT | W [IFFT [V

We would like the delay to be less than
512 samples (10ms)

Partitioned Convolution
For Real-Time Audio Effect Processing

Eric Battenberg, David Wessel, Juan Colmenares

ot~ in) -~ ~ 1~

Uniform Partitioning

e To trade off between complexity and
latency we can split the filter into
smaller delayed parallel filters.

| 1 2 3
.
N

e This reduces latency to N, but increases
the number of FFTs we must compute.

I e e
1 1

H1
+

L

v g3
delay(N)

—

delay(N) Block FFT Convolver

>

Frequency Delay Line (FDL)

With Uniform Partitioning, we can exploit
linearity of FFT’s by moving them outside
of the parallel delay line.

In this “FDL”, we only have to compute
one FFT/IFFT per iteration.

Complex
FFT v 3| Mulit
Complex
v i IFFT > ¥

e

Multiple FDL's

With a long filter and a small
block size, we may end up with
hundreds of partitions in an FDL. T

Single FDL

x_>1='DL———>Y

To cover more samples per
partition, we can run larger FDL's
in parallel.

Multiple FDL’s

This presents us with a tuning

problem: What is the best set of
FDL’s for a particular filter length F——
and latency? =

delay

x4)
o

Auto-Tuning for Real-Time

We are not only trying to
maximize throughput.

Impulse Response Partitioning
Latency = N

We want to improve the validity e T
of real-time guarantees.

FDL Scheduling

Thread 3

delay(N)

Frequency Delay Line Convolver

> Complex
Mult

For now, we estimate a Worst- oL

Case Execution Time (WCET)
then combine FDL’s that are most
likely to meet their deadlines
(vertical lines in scheduling
diagram).

We will progress to more robust
scheduling as a next step.

Thread 2
(FDL 2)

Thread 1

(FDL 1)

Time

Top-An example multi-FDL partitioning.
Bottom-How each FDL-thread is
scheduled in time.

