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Abstract

Given the multicore microprocessor revolution, we argue that the architecture research community needs

a dramatic increase in simulation capacity. We believe FPGA Architecture Model Execution (FAME) sim-

ulators can increase the number of useful architecture research experiments per day by two orders of mag-

nitude over Software Architecture Model Execution (SAME) simulators. To clear up misconceptions about

FPGA-based simulation methodologies, we propose a FAME taxonomy to distinguish the cost-performance

of variations on these ideas. We demonstrate our simulation speedup claim with a case study wherein

we employ a prototype FAME simulator, Midas, to research the interaction between hardware partitioning

mechanisms and operating system scheduling policy. The study demonstrates the FAME capabilities: we run

a modern parallel benchmark suite on a research operating system, simulate 64-core target architectures

with multi-level memory hierarchy timing models, and add experimental hardware mechanisms to the target

machine. The simulation speedup achieved by our adoption of FAME—250×–allows longer experiments

that reach different conclusions than those from shorter experiments necessitated by SAME.

1 Introduction

Computer architects have long used software simulators to explore instruction set architectures, microar-

chitectures, and approaches to implementation. Compared to hardware prototyping, their low capital cost,

relatively low cost of implementation, and ease of change have made them the ideal choice for the early

stages of research exploration. In addition, when uniprocessor performance was doubling every 18 months,

simulation speed correspondingly doubled every 18 months without any special programming effort.

The recent abrupt transition to multicore architectures [5], however, has both increased the complexity

of the systems architects want to simulate and lost the straightforward path to simulator performance scal-

ing. Parallel applications exhibit more complex behaviors than sequential applications, including timing-

dependent non-deterministic execution, cache coherence traffic, and operating system scheduler interactions.
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The move to multicore was primarily driven by the end of traditional technology scaling, causing power and

thermal issues to come to the fore. Application software complexity has also increased, and dynamically

generated code is common, including code that is automatically tuned to the hardware implementation on

which it runs. Although it is generally well understood how to model these various phenomena, accurate

models require detailed cycle-level simulation. Unfortunately, detailed cycle-level simulation is notoriously

difficult to parallelize due to the need for regular cycle-by-cycle synchronization, and hence sequential soft-

ware simulators have fallen far behind the performance required to support the new wave of parallel systems

research.

This paper argues that architecture research now faces a crisis in simulation because of the new re-

quirements and the consequences of the move to multicore processors. Indeed, we found that the median

instructions simulated per benchmark was similar in ISCA papers in 1998 and 2008. In recent papers, those

instructions were simulated across an average of 16 times as many processors, so the number of instruc-

tions per processor actually decreased over that decade. To tackle this simulation gap, several research

groups have been exploring the use of FPGAs to build various forms of FPGA-accelerated architecture

simulators. In this paper, we use the terms Software Architecture Model Execution (SAME) or FPGA (Field-

Programmable Gate Array) Architecture Model Execution (FAME) to label the two approaches to multicore

simulation. Due to the rapid progress made by the whole FAME community over the last few years, there

appears to be considerable confusion about the structure and capabilities of FAME simulators in the broader

architecture community. This paper proposes a four-level taxonomy of increasingly sophisticated FAME

levels to help explain the capabilities and limitations of various FPGA simulation approaches.

We next present the detailed design of the Midas FAME simulator, a very efficient architectural sim-

ulator for early-stage design exploration. We describe how Midas supports various forms of architecture

experiment and how modifications would be made to support other studies. The following section provides

a quantitative evaluation of the Midas FAME simulator against Simics+GEMS [18, 19], a popular SAME

simulator. We compare simulation speeds for the PARSEC benchmark suite [8]. We show that while pure

functional simulations on a few cores run at about the same speed, the Midas FAME simulator runs detailed

models on 64 cores on average 269× faster than Simics+GEMS, with a maximum speedup of 806×.
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2 Multiprocessor Simulation

A modern processor running an application workload is difficult to model analytically, yet building a

prototype for each design point is prohibitively expensive. Software simulators have therefore become the

primary method used to evaluate architectural design choices. We call the machine being simulated the

target and the machine on which the simulation runs the host.

Simulating parallel target machines is much more complex than simulating uniprocessors. Part of the

added complexity is simply that the target hardware is more complex, with multiple cores and a cache-

coherent shared memory hierarchy. However, another complexity is that a parallel software runtime must be

present to support multithreading or multiprogramming across the multiple cores of the simulated target. For

multiprocessor research, trace-driven simulation is still often used despite the inability of traces to capture

the effects of timing-dependent execution interleaving, as developing a full system environment capable of

running large workloads is difficult.

As with uniprocessor simulators, many parallel simulators only modeled user-level activity of a single

application (e.g., RSIM [22]). The SimOS project demonstrated how to run an operating system on top of

a fast software simulator [25]. SimOS supported multiple levels of simulation detail, and the fastest version

of SimOS used dynamic binary translation to speed target instruction emulation while emulating cache

hierarchies in some detail [33]. This research was later incorporated into the commercial product Simics,

which allowed researchers to study large application programs and the operating system running together.

Augmented with detailed performance models developed by other researchers [19], Simics has become a

popular tool in the architecture community; we provide a detailed evaluation of its performance in Section 5.

Sadly, it is difficult to parallelize detailed multiprocessor simulations to run efficiently on parallel host

machines. The need for cycle-by-cycle interaction between components limits the parallel speedup possible

due to the high cost of software synchronization. If this cycle-by-cycle synchronization is relaxed, paral-

lelized software simulators can attain some speedup but at the cost of needing to validate that the missing

interactions do not affect the experiment’s results [20, 24].

As with uniprocessors, researchers have considered using sampling to reduce multiprocessor simulation

time. Alas, mixed mode simulation and sampling do not work well in general for multiprocessor simula-

tions [7]. For uniprocessors, the program execution should be the same no matter the underlying microar-

chitecture, and so the architectural state of the processor is correct at the beginning of any sample point for
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any target microarchitecture. Such is not the case for multiprocessors, because software thread interleavings

change depending on the behavior of the microarchitecture in each core. For example, if you were interested

in exploring the impact of relaxed consistency models on multithreaded programs, you might never see the

interesting events if the functional simulation used sequential consistency to obtain sample start points. Sam-

pling can give representative results for multiprogrammed workloads, since processes running on different

cores generally do not interact via shared memory. Others have argued that transaction-oriented applications

such as databases are also amenable to sample-based simulation, since any sample is representative of some

legal overlap of independent transactions [32].

Implicit in many techniques used to reduce simulation time is the assumption that software is compiled

statically, changes slowly and is independent of the target architecture. Architects have generally treated

benchmark programs as static artifacts to measure without understanding the problems being solved or the

algorithms and data structures being used. Thus, collections of old software like SPEC were reasonable

benchmarks for architectures of the future, as long as SPEC suite changed every five years to reduce games-

manship. In fact, many architectural studies have just used precompiled binaries distributed with a shared

simulator infrastructure. New programs, new programming models, and new programming languages were

largely ignored. The multicore revolution is such an abrupt change that this laissez faire approach will no

longer work, since by definition we need new programs, models, and languages. Existing simulation time

shortcuts are less likely to be useful, and simulation latency becomes at least as important as simulation

throughput.

3 FPGA Architecture Model Execution

As observed by the RAMP (Research Accelerator for Multiple Processors) project [30], FPGAs have

become a promising vehicle for architectural investigation, providing a highly parallel programmable ex-

ecution substrate that can run simulations several orders of magnitude faster than software. Previously,

FPGA processor models were hampered by the need to partition a processor across multiple FPGAs, in-

creasing hardware costs, reducing performance, and significantly increasing development effort. But FPGA

capacity has been scaling with Moore’s Law. Now, depending on complexity, multiple processors can fit in

a single FPGA. Furthermore, future scaling should allow FPGA capability to continue to track simulation

demands as the number of cores in target systems grows. Due to high volumes, FPGA boards have also

become relatively inexpensive; the Midas design, for example, uses a $750 commercial board.
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Multiple groups have now developed working FAME simulators [10, 12, 21, 16, 11], but with perhaps an

even greater variety than software simulators and correspondingly a larger variety of tradeoffs between simu-

lator performance, accuracy, and flexibility. Consequently, we have heard much confusion in our discussions

with other architects about how FAME relates to prior work using FPGAs for architecture prototyping and

chip simulation, and what can and cannot be done using FAME.

In this section, we first present three binary dimensions within which we can categorize FAME ap-

proaches. Next, inspired by the five-level RAID classification, we present four levels of FAME that capture

the most important design points in this space. Our hope is these FAME levels will help explain FPGA-based

emulation approaches to the broader architecture community.

3.1 FAME Implementation Techniques

We use the following three binary dimensions to characterize FAME implementation approaches.

3.1.1 Direct vs. Decoupled

The Direct approach is characterized by the direct mapping of a target machine’s RTL description into

FPGA gates, where a single target clock cycle is executed in a single host clock cycle. An advantage of the

direct approach is that, in theory, a re-synthesis of the target RTL for the FPGA provides a guaranteed cycle-

accurate model of the target processor. The direct approach has been popular in chip verification; one of

the first uses of FPGAs was emulating a new chip design to catch logic bugs before tapeout. Quickturn [14]

was an early example, where boxes packed with FPGAs running at about 1–2 MHz could run much larger

test programs than feasible with software ECAD logic simulators. Direct emulation is also often used by

intellectual property (IP) developers to supply a new core design to potential customers for evaluation and

software porting before committing to an ASIC. FPGAs are also used both for FPGA prototyping, where

FPGAs are used to construct research processors at much lower cost, risk, and design effort compared to a

custom chip implementation [21, 16, 27], or to build FPGA computers, where FPGAs are the final target

technology (e.g., Xilinx Microblaze [2], Convey HC-1 [3]). Although these are often confused with Direct

FAME, neither is really intended to provide a model of a target machine (they are the target machine).

Direct emulation has become much easier as the growth in FPGA capacity reduces the need to partition

monolithic RTL blocks, such as CPUs, across FPGAs, but large system designs may still require many

FPGAs. The inefficiency of FPGAs at emulating common logic structures—such as multiported register
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files, wide muxes, and CAMs—exacerbates capacity problems.

A more powerful FAME option, which improves efficiency and enables other more advanced options,

is to adopt a Decoupled design, where a single target clock cycle can be implemented with multiple or

even a variable number of host clock cycles. For example, direct mapping of a multi-ported register file

is inefficient on FPGAs because discrete FPGA flip-flops are used to implement each register state bit

with large combinational circuits used to provide the read ports. A more efficient decoupled model would

implement a target multi-ported register file by time-multiplexing a single-ported FPGA RAM over multiple

FPGA clock cycles. The drawback of a decoupled design is that models have to use additional host logic

to model target time correctly, and a protocol is needed to exchange target timing information at module

boundaries if modules have different target to host clock cycle ratios.

3.1.2 Full RTL vs. Abstracted Machine

When the full RTL of a target machine is used to build a FAME model, it ensures precise cycle-accurate

timing. However, the desired RTL design is usually not known during early stage architecture exploration,

and even if the intended RTL design is known, it can require considerable effort to implement a working

version including all corner cases. Even if full correct RTL is available, it may be too unwieldy to map

directly to an FPGA.

Alternatively, we can use a higher-level description of the design to construct a FAME model. Abstraction

can reduce both model construction effort and FPGA resource needs. The primary drawback is that an

abstract model needs validation to ensure accuracy, usually by comparing against RTL or another known

good model. If the mechanism is novel, an RTL prototyping exercise might be required to provide confidence

in the abstraction. Once validated, however, an abstract component can be reused in multiple designs.

HAsim [12] is an example of the Abstract FAME option, where a processor model is divided into separate

functional and timing models that do not correspond to structural components in the target machine. Split

functional and timing models provide similar benefits as when used in SAME simulators. Only the timing

model needs change to experiment with different microarchitectures, and the timing model can be readily

parameterized. The parameters, e.g., cache size and associativity, can even be set at runtime in the FAME

model without resynthesizing the design, dramatically increasing the number of architecture experiments

that can be performed per day.
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3.1.3 Single-Threaded vs. Multi-Threaded

A cycle-accurate FAME model synchronizes all model components on every target clock cycle. Some com-

plex components might have long latencies, e.g., to communicate with off-chip memory or across multiple

FPGAs. A standard approach to tolerate latencies and obtain greater performance from a processor is to

switch threads every clock cycle so that all dependencies are resolved by the next time a thread is exe-

cuted [4, 9]. The same approach can be applied to the host implementations of FAME models in a technique

we call host multithreading, and it is particularly applicable to models of parallel target machines. When

the target system contains multiple instances of the same component (e.g., cores in a manycore design), the

host model can be designed so that one physical FPGA pipeline can model multiple target components by

interleaving the component models’ execution using multithreading. For example, a single FPGA processor

pipeline might model 64 target cores. Alternatively, a single FPGA router pipeline might model 16 on-chip

routers. Host multithreading greatly improves utilization of FPGA resources by hiding host communication

latencies. For example, while one processor target model is making a request to a memory module, we can

interleave the activity of 63 other target processor models. Provided modeling of the memory access takes

fewer than 64 FPGA clock cycles, the emulation will not stall. Multithreaded emulation adds additional de-

sign complexity but can provide a significant improvement in emulator throughput. ProtoFlex is an example

of a FAME simulator that host-multithreads its functional model [11].

3.2 FAME Levels

Level Name Example Strength Experiments/day/$1K
000 Direct FAME Quickturn, Palladium Debugging logical design 0.001
001 Decoupled FAME GreenFlash Higher clock rate; lower cost 0.667
011 Abstract FAME HAsim Simpler, parameterizable design;

faster synthesis; lower cost
40.000

111 Multi-threaded FAME Midas Lower cost; higher clock rate 170.000

Table 1: Summary of four FAME Levels, including examples.

A combination of these FAME implementation techniques often makes sense. Inspired by the five levels

of RAID, the next four sections present a four-level taxonomy of FAME that improves in cost, performance,

or flexibility. The four levels are distinguished by their choices from the three options above, so we can

number the levels with a three-bit binary number, where the least-significant bit represents Direct (0) vs.

Decoupled (1) and the most-significant bit represents Single-Threaded (0) vs. Multi-Threaded (1). Table 1

summarizes the levels and gives examples and the strengths of each level. Each new FAME level lowers

7



cost and usually improves performance over the previous level, while moving further away from the concrete

RTL design of the target.

To quantify the cost-performance difference of the four FAME levels, we propose as a performance

measure the number of simulation experiments that can be performed per day. Given the complex dynamics

of manycore processors, operating systems, and workloads, we believe the minimum useful experiment is

simulating 1 second of target execution time at the finest level of detail for 16 cores at a clock rate of 2 GHz

with shared memory and cache coherence. We employ this as an approximate unit to measure an experiment.

The same experiment but running for 10 seconds is 10 units, the same experiment but running for 1 second

at 64 cores is 4 units, and so on. Note that in addition to host simulation time, you must include the time

to set up the experiment (for example, design synthesis time). To get a cost-performance metric, we simply

divide the number of experiments per day by the cost of that FAME system. To keep the numbers from

getting too small, we calculate experiments per day per $1000 of the cost of the FAME system. The last

column of Table 1 estimates this metric for 2009 prices.

3.2.1 Direct FAME (Level 000): (e.g., Quickturn)

The common characteristic of Direct FAME emulation systems, such as Quickturn, is that they are designed

to model a single chip down to the gate level with a one-to-one mapping of target cycles to host cycles.

Let’s assume we could simulate the gates of 16 cores on a $1 million Direct FAME system at 2 MHz. Each

run would then take 2 GHz/2 MHz =1000 seconds or 17 minutes. Because the model is not parameterized,

we have to rerun the CAD tool chain for each experiment to resynthesize the design. Given the large number

of FPGAs and larger and more complicated description of a hardware-ready RTL design, it can take up to 30

hours to set up a new design [29]. If Direct FAME can do 1 experiment per day, the number of experiments

per day per $1000 is 0.001.

In addition to high simulation turnaround time, Direct FAME requires great design effort to change the

RTL for each experimental machine, unlike some of the later FAME Levels. Although helpful in the later

stages of debugging the design of a real microprocessor intended for fabrication, Direct FAME is too expen-

sive and time consuming to use for early-stage architectural investigations.

Newer gate-level emulation products, such as Cadence Palladium and MentorGraphics Veloce, are no

longer based on commercial FPGAs but instead use custom-designed logic simulation engines. However,

they still have relatively low target clock rates [1] and cost millions of dollars, though the tools are vastly
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superior to the FPGA tools for this purpose.

3.2.2 Decoupled FAME (Level 001): (e.g., Green Flash memory system)

Programmable logic is slow compared to hardwired logic, and some ASIC features, such as multiported

register files, map poorly to FPGAs, consuming resources and cycle time. For example, Green Flash [31]

can fit two Tensilica cores with floating-point units per medium-sized FPGA, but it runs at only 50 MHz [26].

The memory system uses off-chip DRAM, however, which runs much faster than the logic (200 MHz) and

so decoupling is used in the memory system to match the intended target machine DRAM timing.

Performing a 16-core experiment needs 2 BEE3 [13] boards, which cost academics about $15,000 per

board, plus the FPGAs and DRAMs, which cost about $3000 per board, or $36,000 total. It takes 8 hours

to synthesize and place and route the design and about 2 GHz/50 MHz or 40 seconds to run an experiment.

Since this level has a few timing parameters, such as DRAM latency and bandwidth, Green Flash can run

about 24 experiments per synthesis [26]. (Alas, the state of FPGA CAD tools means FPGA synthesis is a

human-intensive task; only one synthesis can be run per workday.) Thus, the number of experiments per

day per $1000 is 24/36 or 0.667. Decoupled FAME (Level 001) improves the cost-performance over Direct

FAME (Level 000) by a factor of almost 700×. This speedup is mostly due to processor cores fitting on a

single FPGA, thus avoiding the off-chip communication that slows Direct FAME systems; also, Decoupled

FAME uses a simple timing model to avoid resynthesis for multiple memory system experiments.

It is both a strength and a weakness of Decoupled FAME that the full target RTL is modeled. The

strength is that the model is guaranteed to be cycle accurate. Also, the same RTL design can be pushed

through a VLSI flow to obtain custom layout to yield reasonable area, power and timing numbers [28]. The

weakness is that designing the full RTL for a system is labor-intensive, and rerunning the tools is slow.

This makes Decoupled FAME less suitable for early-stage architecture exploration, where the designer is

not ready to commit to a full RTL design. Decoupled FAME thus takes a great deal of effort to perform a

wide range of experiments compared to Abstract and Multithreaded FAME. These higher levels, however,

require decoupling to implement their timing models, and hence we assume that all the following levels are

Decoupled (or odd-numbered in our enumeration).
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3.2.3 Abstract FAME (Level 011): (e.g., HAsim)

Abstract FAME allows high-level descriptions for early-stage exploration, which simplifies the design and

thereby reduces the synthesis time to under 1 hour. More importantly, it allows the exploration of many

design parameters without having to resynthesize at all, which dramatically improves cost-peformance.

Let’s assume we need 1 BEE3 board for 16 cores, so the cost is $18,000. To simulate cache coherency,

the simulator will take several host cycles per target cycle for every load or store to snoop on the addresses.

Let’s assume a clock frequency of 65 MHz, as with HAsim [23], and an average number of host cycles

per target cycle of 4. The time for one experiment is then 2 GHz/65 MHz × 4 = 123 seconds. Since human

intervention isn’t needed to program the FPGAs, the number of experiments per day is 24 hours/123 seconds

= 702. The number of experiments per day per $1000 is then 702/18 or about 40. Abstract FAME (Level

011) makes a dramatic improvement in this metric over lower FAME levels: by a factor of almost 60 over

Decoupled FAME (Level 001) and a factor of 40,000 over Direct FAME (Level 000).

In addition to the advance in cost-performance, Abstract FAME allows many people to perform architec-

ture experiments without having to modify the RTL, which both greatly lowers the effort for experiments

and greatly increases the number of potential experimenters. Once again, the advantages of abstract designs

and decoupled designs are so great that we assume any subsequent level is both Abstract and Decoupled.

3.2.4 Multithreaded FAME (Level 111): (e.g., Midas)

The main cost of Multithreaded FAME is more RAM to hold copies of the state of each thread, but RAM

is one of the strengths of FPGAs — a single programmable gate can be exchanged for 64-bits of RAM in

a Virtex-5. Hence, Multithreaded FAME increases the number of cores that can be simulated efficiently

per FPGA. Multithreading can also increase the clock rate of the host simulator by removing items on the

critical path, such as bypass paths.

Since we are time-multiplexing the FPGA models, a much less expensive XUP board ($750) suffices.

Multithreading reduces Midas’ host cycles per target core-cycle to 1.90 (measured) and enables a clock rate

of 90 MHz. The time for a 16-core simulation is then 2 GHz/90 MHz × 16 × 1.9 = 675 seconds. The

number of experiments per day is 24 hours / 675 seconds = 128. The number of experiments per day per

$1000 is then 128 / .75 or about 170. Multithreaded FAME (Level 111) improves this metric by more than

a factor of 4 over Abstract FAME (Level 011), by a factor of about 250 over Decoupled FAME (Level 001),
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and by a factor of 170,000 over Direct FAME (Level 000). We expect that Midas V2 will fit three pipelines

on a single FPGA and run at 100 MHz, allowing over 550 experiments per day per $1000.

In addition, Multithreaded FAME lowers the entry point cost by a factor of 24 to 48 versus Abstract or

Decoupled FAME, making it possible for many more experimenters to do parallel architecture research.

3.2.5 Other Possible FAME Levels

By definition, direct mapping cannot be combined with abstract models or multithreading. An RTL design

can be multithreaded, however, whereby every target register is replicated for each threaded instance but

combinational logic is shared by time multiplexing. We ignored this Multithreaded RTL combination (101)

as a FAME level because, although plausible, we have not seen instances of this combination in practice.

3.2.6 Hybrid FAME Simulators

Although we present levels as completely separate approaches for pedagogic reasons, real systems will

combine modules at different levels, or even use hybrid designs partly in FPGA and the rest in software.

An example of a mixed FPGA-only design is often used by System-on-a-Chip IP providers to provide a

fast emulation of their IP block to customers. The RTL is mapped to the FPGA is the same as will be mapped

to the final ASIC implementation (Direct FAME, Level 001), but the rest of the system is described at an

abstract level (Abstract FAME, Level 011). FAST [10] is an example of a hybrid FAME/SAME system,

where the functional model is in software and the timing model is in hardware.

4 The Midas FAME Simulator

Midas is a Multithreaded FAME (Level 111) simulator deployed on a single, $750 Xilinx Virtex-5 FPGA

board. In this section, we describe the design of Midas and how it attains high efficiency by tailoring the

design to the FPGA environment.

The current Midas simulation target is a tiled, shared-memory manycore system with up to 64 single-

issue, in-order SPARC V8 cores. Midas is a full-system simulator: it boots the Linux 2.6.21 kernel, as

well as ROS, our manycore research operating system. Midas’ target machine is highly parameterized.

Most simulation options are runtime-configurable: without resynthesizing a new FPGA configuration, we

can vary the number of target cores, cache parameters (size, associativity, line size, latency, banking), and

DRAM configuration (latency, bandwidth, number of channels). This extensive runtime parameterization
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enables expedient design space exploration and comes at little cost to simulator performance: with a detailed

memory system timing model, we can simulate over 40 million target core-cycles per second.

4.1 Midas Microarchitecture
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Figure 1: Midas Microarchitecture

Figure 1 shows the microarchitecture of Midas. The simulator decouples timing from function: the func-

tional model faithfully executes the SPARC V8 ISA and maintains architected state, while the timing model

determines instruction execution time in the target machine. Both models reside in one FPGA to minimize

synchronization costs, and both are host-multithreaded to achieve high utilization of FPGA resources.

The functional model implements the full SPARC V8 ISA in hardware, including floating-point and

precise exceptions. It also provides sufficient hardware to run an operating system, including MMUs, timers,

and interprocessor interrupts. The functional model is deeply pipelined, and avoids features such as highly

ported register files and wide bypass muxes that map poorly to FPGAs. The functional model carefully

exploits Virtex-5 features, for example, double-clocking block RAMs and mapping target ALU instructions

to hardwired DSP blocks. The single in-order issue functional pipeline is 64-way multithreaded, enabling

functional simulation of 64 target cores. Each thread’s private state includes a 7-window register file, a 32-

entry instruction TLB and 32-entry data TLB, a 256-byte direct-mapped instruction cache, and the various

processor state registers. Although 64 copies of this state seems large, trading state for increased pipeline

utilization is attractive in the FPGA fabric, wherein storage is cheap relative to computation.

The threaded functional pipeline has a single, shared, lockup-free host data cache. It is 16 KB, direct-
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mapped, and supports up to 64 outstanding misses. Sharing a very small host cache between 64 threads is

a design point peculiar to the FPGA fabric: the low latency to the host DRAM, approximately 20 cycles in

the worst case, is covered easily by multithreading. Thus, the lower miss rate of a large, associative host

cache offers little simulation performance advantage. Indeed, across a subset of the PARSEC benchmarks,

the small host cache incurs at most a 3.8% performance penalty compared to a perfect cache. (The tiny

256-byte instruction caches have even less of an impact on performance—at most 2.3%.)

The timing model tracks the performance of a 64-core tiled manycore system. The target processor core

is currently a single-issue, in-order pipeline that sustains one instruction per clock, except for instruction and

data cache misses. Each core has private instruction and data caches. The cores share a unified lockup-free

L2 cache via a magic crossbar interconnect. Each L2 bank connects to a DRAM controller model, which

models delay through a first-come, first-served queue with a constant service rate. Modeling the timing

behavior of cache coherence traffic on realistic interconnects is a target for future work, though should fit

easily within the current design framework.

Separating timing from function expands the domain of systems Midas can model, and allows the effort

we expend on the functional model to be reused across many different target machines. For example, we

can capture the timing of a system with large caches by keeping only the cache metadata on chip. The

functional model still fetches from its host instruction cache and performs memory accesses to its host data

cache when the timing model schedules it to do so. Moreover, the flexibility of splitting timing and function

allows us to configure Midas’ timing models at runtime. To model different cache sizes, for example, we fix

the maximum cache size at synthesis time, and at runtime we program configuration registers that determine

how the cache tag RAMs are indexed and masked. Most timing model parameters can be set at runtime;

among these are the size and associativity of the L1 and L2 caches, the number of L2 cache banks and

their latencies, and DRAM bandwidth and latency. The current implementation of the timing model runs at

90 MHz on the Virtex-5 FPGA. In this configuration, it supports up to 12 MB of total target caches, using

over 90% of the on-chip FPGA block RAM resources.

4.2 Model Verification and Flexibility

Midas comprises about 36,000 lines of SystemVerilog with minimal third-party IP blocks. We liberally

employ SystemVerilog assertions to aid in RTL debugging and verification. The functional model is verified

against the SPARC V8 certification suite from SPARC International. The timing models are verified by our
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in-house microbenchmarks. Although Midas does not solve the simulator timing verification problem that

SAME simulators have, the greatly enhanced performance of FAME simulators eases the verification effort.

The timing model and its interface to the functional model are designed to be simple and extensible to

facilitate rapid evaluation of alternative memory hierarchies and microarchitectures. Despite its extensive

runtime configurability, the timing model comprises only 1000 lines of SystemVerilog. As an example of

its flexibility, we implemented a simplified version of the Globally-Synchronized Frames [17] quality-of-

service framework in about 100 lines of code and three hours of implementation effort.

Synthesis takes about two hours on a mid-range workstation with a 28% logic (LUT) and 90% BRAM

utilization on a mid-size Virtex-5 FPGA. The low logic utilization comes in part from mapping computation

to the built-in DSPs and by omitting bypass multiplexers. The high block RAM utilization comes from both

the multithreaded design and the large target caches we support.

4.3 Related FAME Work

Midas is inspired in part by several recent works from the FAME community. Fort et al [15] employed

multithreading to improve utilization of soft processors with little area cost. ProtoFlex [11] is an FPGA-

based full-system simulator that employs host-multithreading to simulate multiple SPARC V9 cores with a

single pipeline. Its primary purpose is to accelerate functional warming for a SAME sample-based simula-

tor, so although it provides a functional cache model to speed up cache warming, it lacks a timing model.

ProtoFlex also lacks a hardware floating-point unit, as it targets commercial workloads like OLTP; its perfor-

mance thus suffers on arithmetic-intensive parallel programs, like those in the PARSEC suite. HAsim [12]

is a FAME Level 011 simulator that similarly decouples target timing from functionality. FAST [10] is a

hybrid FAME/SAME simulator whose functional model is in software and whose timing model is in an

FPGA.

5 Evaluation: A Multicore OS Scheduling/HW Partitioning Case Study

To demonstrate the capabilities of Midas Multithreaded FAME, we experimented with the interaction be-

tween hardware partitioning mechanisms and operating system scheduling policy. In this case study, we run

a modern parallel benchmark suite, boot a research operating system, simulate manycore target architectures

with multi-level memory hierarchy timing models, and add experimental hardware mechanisms to the target

machine. The conclusions we reached using the additional simulation capacity of FAME are different from
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what we would have concluded using the limited simulation capacity of SAME.

5.1 Problem Statement

In the manycore era, general-purpose OS scheduling mechanisms will have to address a growing number

of on-chip resources shared by concurrently running applications, which we call spatial resource allocation.

Spatial resource allocation is challenging because applications can have diverse resource requirements, and

the range of possible schedules grows combinatorially with applications and resources. Our proposal is to

help the scheduler make intelligent decisions about spatial scheduling by leveraging predictive models of

application performance. Model-based scheduling is only compelling if the decision space is large enough to

justify the overhead of the technique, which is true for manycore machines with shared memory hierarchies.

To make the case for model-based control of spatial resource scheduling, we need to learn if the performance

models we create are accurate, which metrics the scheduler should use, and how far from optimal are the

produced schedules. Evaluating each issue requires seconds of simulated target time and/or hundreds of

experiments. We thus need a simulator that can run at OS timescales with reasonable turnaround.

Furthermore, we believe architectural support for performance isolation can greatly improve the effec-

tiveness of predictive modeling and scheduling, as well as improve application performance by reducing

interference. To test this theory, we added hardware partitioning mechanisms to the target architecture.

5.2 Partitioning Mechanisms

Our allocation framework includes the following resources: the cores and their private caches, the shared

last-level cache, and shared memory bandwidth. For each resource, we provide a mechanism to prevent ap-

plications from exceeding their allocated share. The OS assigns cores and their associated private resources

to a specific application. For the shared last-level cache, we modify the OS page-coloring algorithm so that

applications are never given a page from a different application’s color allocation. Colors map to specific ar-

eas of the cache and do not overlap. To partition off-chip memory bandwidth, we use Globally-Synchronized

Frames (GSF)[17]. GSF provides strict Quality-of-Service guarantees for minimum bandwidth and the max-

imum delay of a point-to-point network—in our case the memory network—by controlling the number of

packets that each core can inject per frame. We added hardware GSF mechanisms to Midas by by modifying

its timing model.
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Attribute Setting
CPUs 64 single-issue in-order cores @ 1 GHz

L1 Instruction Cache Private, 32KB, 4-way set-associative, 128-byte lines
L1 Data Cache Private, 32 KB, 4-way set-associative, 128-byte lines

L2 Unified Cache Shared, 8MB, 16-way set-associative, 128-byte lines, inclusive, 4 banks, 10ns latency
Off-Chip DRAM 2 GB, 4 3.2 GB/sec channels, 70ns latency

Table 2: System parameters of the target machine simulated by Midas FAME.

Name Type Parallelism Working Set Bandwidth Demand
Blackscholes financial PDE solver coarse data parallel 2.0 MB minimal

Bodytrack vision medium data parallel 8.0 MB grows with cores
Fluidanimate animation fine data parallel 64.0 MB grows with cores
Streamcluster data mining medium data parallel 16.0 MB high

Swaptions financial simulation coarse data parallel 0.5 MB grows with cores
x264 media encoder pipeline 16.0 MB grows with cores
Tiny synthetic one thread does all work 1 KB minimal

Greedy synthetic data parallel 16.0 MB high

Table 3: Benchmark description. PARSEC benchmarks use simlarge input set sizes, except for x264 and fluidani-
mate, which use simmedium due to limited physical memory capacity. PARSEC characterizations are from [8].

5.3 Modeling Framework

To explore the relationship between model accuracy and type of model for our problem space, we evaluate

linear additive models, quadratic response surface models, and non-linear models based on Kernel Canonical

Correlation Analysis (KCCA) [6]. The OS scheduler uses the models for each application to decide an

optimal resource allocation between a mix of applications all running concurrently. The algorithm works by

maximizing an objective function, which serves to convert model outputs into a measure of overall decision

fitness. The form of the objective function influences the type of algorithm we can use to maximize fitness.

We evaluate three different objective functions. A robust evaluation of this framework requires full cross

validation, which is computationally demanding.

5.4 Experimental Setup

Our experimental platform for this case study consists of five Xilinx XUP FPGA boards. Each board is

programmed to simulate one instance of our target architecture. Table 2 lists the target machine parameters.

We run six applications from the PARSEC benchmark suite [8], as well as two synthetic microbenchmarks.

Table 3 lists the relevant benchmark qualities. The performance models are built based on applications

running alone on a partition of the machine but are tested against data collected from multiprogrammed
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scheduling scenarios. We simulated all possible allocations for each benchmark running alone and then all

possible schedules of allocations for 3 pairs of benchmarks running simultaneously for a combined total of

68.5 trillion target core-cycles.

5.5 Case Study Results

We found that predictive-based modeling has potential to successfully manage some applications, de-

pending on the scheduler’s objective function. For example, if the objective is to minimize energy, the

approach works quite well. However, if the objective is to minimize the time it takes to complete both ap-

plications, the naive baselines such as splitting the machine in half or time-multiplexing often performed as

well or significantly better than model-based allocation. Figure 2(a) presents an example of these results.

More importantly, our conclusions about the value of model-based scheduling would have been different

had we not simulated the entire execution of benchmarks, with large input sets, for all possible allocations.
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Figure 2: (a) The performance of various scheduling methodologies and objective functions for one scheduling prob-
lem, normalized to the globally optimal schedule’s performance. The scheduler tries to minimized both objective
functions. (b) The effect of benchmark size on the difficulty of the scheduling problem. The average chosen schedule
performance, global worst case and naive scheduling case are normalized to the globally optimal schedule’s per-
formance for each dataset. The scheduling decision is Blackscholes vs. Streamcluster, the objective function is to
minimize runtime.

Effect of Benchmark Input Set Size. We quantified the effect of benchmark configuration size by rerun-

ning our experiments using either the PARSEC simsmall size input sets or only synthetic benchmarks.

While we would expect different inputs or simpler benchmarks to produce slightly different results, Fig-

ure 2b reveals that these modifications significantly change the shape of the space of possible schedules.

With both the small input set and synthetic benchmarks our scheduling technique is very close to optimal

performance. However, for the larger input set the prediction-based schedule is 50% worse than optimal and
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naively dividing the machine in half is always better. The reduced benchmarks make the space of possible

decisions smaller and the process of making good decisions easier, giving us an unwarranted confidence in

the scheduler’s abilities.

Effect of Testing All Possible Allocations. Full cross validation of our scheduler requires collecting data on

all possible schedules. We would otherwise have no idea what the optimal or pessimal scheduling decisions

are, and thus no way to tell how well the scheduler is doing in comparison. The space of scheduling

performance is complicated and discontinuous, so we are not guaranteed to capture true global optima if we

validate by only testing against sample of possible schedules.
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Figure 3: (a) The percentage difference in runtime between the average chosen schedule and the globally optimal
schedule, for three scheduling problems. (b) The percentage error between the perceived optimal schedule for a given
validation sample size and the true globally optimal schedule. Note that error in perception increases as sample size
decreases, and can be a significant fraction of the percentage difference in runtime from (a).

Figure 3 illustrates how limited validation approaches may skew our interpretation of experimental re-

sults. Figure 3a plots the percentage difference in runtime between the average chosen schedule and the

globally optimal schedule, for three scheduling problems. This difference illustrates how far our scheduler

really is from finding the best schedule, but it can only be determined by evaluating the performance of all

possible schedules.

In Figure 3b, we vary the amount of schedules examined during validation, covering different subsets

of the total possible schedules. For each validation sample set size, we take many samples and report the

percentage error in the average observed optima. The observed error varies because samples that are not

inclusive of all possible schedules may miss optimal points, and smaller samples are more likely to exclude

these important points. Note that the errors in Figure 3b can be a significant fraction of the true performance

in Figure 3a for the smaller validation samples.
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This data indicates that using reduced validation methods would have caused us to overestimate the

quality of our scheduling solutions. As the perceived optimum degrades, our scheduler falsely appears

to perform better. Only examining all possible schedules can give us an unbiased view of algorithmic

and modeling quality. In conclusion, we could not have discovered the problem cases for our scheduling

framework had we done a study with only reduced benchmarks or using only a small set of validation

points. Gaining a complete understanding of scheduler performance in order to further improve it has only

been made possible by FAME 111.

5.6 Simulator Speedup Results

To compare against Midas’ performance, we run the PARSEC benchmarks inside Virtutech Simics [18],

a popular SAME simulator. We run Simics with varying levels of architectural modeling detail: pure func-

tional simulation, Simics g-cache timing modules, and the Multifacet GEMS [19] Ruby timing module.

We configure Simics to match the target machine simulated by Midas FAME in the case study as closely

as possible. However, both g-cache and GEMS Ruby modules implement timing for a MESI coherence

policy, whereas Midas FAME does not at present do so. The function/timing split within Midas leads us to

believe that adding the timing information for MESI would have very little impact on simulation speed.

We vary the number of target machine cores simulated in both Midas and Simics. The applications spawn

as many threads as the target machine has cores, but the workload size is fixed. Simics was run on 2.2GHz

dual-socket dual-core AMD Opteron processors with 4GB of DRAM. Reducing the frequency at which

Simics interleaved between different target processors offered a limited performance improvement.

The longest running Simics simulation takes over 192 hours (8 days), whereas the longest Midas FAME

simulation takes 66 minutes. Figure 4 plots the wall clock runtime of a 64 core target machine simulated by

Midas FAME and different Simics configurations across benchmarks and pairs of co-scheduled benchmarks.

Midas is up to two orders of magnitude faster. Critically, this speedup allows the research feedback loop to

be as short as minutes or tens of minutes, rather than tens or hundreds of hours.

Midas FAME runtimes generally improve as the number of cores is increased because multithreading

becomes more effective, whereas Simics’ performance degrades super-linearly with the number of cores

simulated. With 64-core target machines, Midas FAME is even faster than Simics’s functional simulation.

Figure 5 shows the speedup of FAME over SAME for the different benchmarks and SAME configurations.

The maximum speedup is a factor of 806×.
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Figure 4: Wallclock time of FAME and SAME simulations. The target machine has 64 cores. Possible SAME config-
urations are functional modeling only, g-cache timing modules, and the GEMS Ruby module, with an interleave of
1 instruction. In the cases where two applications are run, each gets 1/2 of the partitionable hardware resources.

0 

10 

20 

30 

40 

50 

60 

70 

80 

4 8 16 32 64 

blackscholes 

0 

200 

400 

600 

800 

1000 

4 8 16 32 64 

streamcluster 

0 

10 

20 

30 

40 

50 

60 

70 

80 

4 8 16 32 64 

swaptions 

0 

50 

100 

150 

200 

250 

300 

350 

4 8 16 32 64 

bodytrack 

0 

100 

200 

300 

400 

500 

600 

4 8 16 32 64 

fluidanimate 

0 

100 

200 

300 

400 

500 

600 

4 8 16 32 64 

S
p
ee

d
u
p
 

Number of Target Cores 

x264 

Functional 

G-Cache 

GEMS Ruby 

Figure 5: Speedup of FAME over SAME. Possible SAME configurations are functional modeling only, g-cache
timing modules, and the GEMS Ruby module, with an interleave of 1 instruction.

The slowdowns incurred by Simics are due nearly entirely to host machine performance, as the bench-

marks themselves scale in performance across more target cores equivalently on Ruby and Midas. The fact

that the slowdowns also correlate with the size of the benchmarks’ inputs and working set suggests that host

cache and TLB misses may present a major performance bottleneck. Unfortunately, Simics is closed–source,

so we were not able to diagnose its poor performance more precisely.

In terms of our case study, we calculate that just the verification of the scheduling decisions’ optimality

would have taken over 73,000 hours of wall clock time using Simics (8.3 years), versus 257 hours with

Midas FAME. Table 4 includes estimates for the entire case study. These estimates are generous to SAME,

as they do not include increased simulation time caused by decreased application performance due to limited
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Case Study Component FAME Total Est. SAME Total Median/Max FAME Median/Max SAME
Runtime (hours) Runtime (hours) Latency (hours) Latency (hours)

Model Sample Sets 49 2,848 0.5 / 2 44 / 196
Model Validation 145 16,150 0.5 / 2 44 / 196

Scheduling Validation 257 73,073 1 / 3 179 / 796
Misconfigured Experiments 82 8,612 1 / 3 179 / 796

Table 4: Comparison of case study simulation times with Midas FAME and Simics SAME. Total hours could be
concurrently divided across multiple simulator instances. SAME times are estimated based on observed wall clock
times for 2B target cycles, and assuming unrestricted target machine resource allocations

simulated resource allocation sizes. This application slowdown was around 2-5x for Midas. Ironically, we

were not able to run Simics long enough to calculate the actual slowdown, which is why we use estimates

based on a sample of 2 billion instructions.

While the extreme SAME simulation overhead could have been partially mitigated by using a cluster of

machines, the latency of individual simulations would remain unchanged. In our experience, long latencies

are harmful to experimenter productivity, as they necessitate waiting days or weeks (33 days worst case)

for any feedback on which design decisions proved worthwhile, which studies should be done next, or even

whether a new mechanism is implemented correctly. Trying to perform a case study like the one presented

here, incorporating both novel software and hardware and operating over realistic stretches of simulated

time, has grown completely untenable with SAME methods.

6 Conclusion

For many reasons, we believe the multicore revolution means the research community needs a boost

in simulation performance. To clarify the many efforts at using FPGAs to deliver that boost, we propose

a four-level nomenclature for FPGA Architecture Model Execution (FAME), inspired by the five levels of

RAID. By estimating experiments per day per dollar, we show improvements in cost-performance by factors

of 200,000 between the lowest and highest FAME levels. Midas, which simulates 64 SPARC CPUs on a

$750 Xilinx Virtex5 board, demonstrates the benefits of the highest FAME level in a research case study

of multicore HW/SW. The FAME boost in simulation time leads to different conclusions in this case study

than had we been limited to fewer experiments with smaller input sets necessitated by the 250× decrease in

simulation speed encountered when using a Software Architecture Model Execution (SAME) simulator.
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