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Gaussian Mixture Models (GMM)

» Probabilistic model for clustering data

» Assumes the distribution of observations
follows a mixture of multidimensional
Gaussian distributions

» Each Gaussian in the mixture has a mean

(¢ ) and a variance (o) parameter, as well
as a weight (1)
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» Example applications

o pememeeis | » Speech Recognition — speaker classification,
s Symechococcus ARNRK . acoustic modeling for speech recognition
£ . G‘ +» Computer Vision — image segmentation,
ol sy Biles 0.98 um hand writing recognition
4 P;écﬁibzrog;occu's.“ .
Sy« .1 » Biology —flow cytometry

o 0w e e » Data mining — topics in documents
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GMM Training (EM algorithm)

» Given a set of observations/events: find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (y, o ,1) and classify observations

» Expectation Maximization (EM) Algorithm
» E step
Compute probabilities of events given model parameters

» M step

Compute model parameters given probabilities
Weights, mean, covariance matrix

» Iterate until convergence

SEJIT Specializer Framework

» High level goal: automatically transform high-level abstraction of a machine learning
algorithm to highly efficient parallel code

General Specializer Setup Code Domains

» Application code iIs written in Python

» Specialization is done by

» Creating templates for both the host and device

(CPU and GPU) code in C a

» Filling templates with the correct code variant
and associated runtime parameters

» ASP Specializer (Mako, CodePy, PyUBLAS)

» Takes in the problem and p

» Selects appropriate code variant (currently tries
all and remembers best-performing one)

nd CUDA » Allocates GPU memory

» Python code handles application
» Manipulates problem data, determines ML targets

» C code that runs quickly on the CPU

» Performs main EM iterative loop
Until convergence, call E step(s) and M step(s)
Calls variants of mstep_covariance(events, GMM_model)

latform parameters » CUDA code that runs quickly on the GPU

» Pulls in the template for the code variant,
les to binary Data Sharing and Allocation

parameterizes it and compi

Template CUDA CUDA on GPU
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X = Read in data

Python to C

» Defines GPU kernels and their operation
» Contains kernel code variants

» To allow trained parameters to be read in Python after
training, we pass references to data allocated in

C sources __o 50’ » C code allocates GPU memory and temporary data

gmm = GMM() ‘

C on Host

m.train Train(){
gm X) for(
launch
launcl.
launch

)

the data back

structures on the CPU, performs training, and copies

» Allocate new event data on demand —i.e. iIf we're
training models on the same data in a loop, we do not
allocate and copy event data every iteration

Covariance Matrix Computation
Code Variants

» Specialization of the covariance matrix computation

» Problem parameters: » Platform parameters
» N — number of events, ~10K-100K (GPU)

» D - event dimension, ~10-40

» M — number of Gaussians (clusters), ~1-128
b

Matrix is symmetric — only compute the lower
D*D/2 cells

» Number of SMs

» Number of SIMD vector lanes

» Size of per-block shared memory
» Size of global memory

Covariance matrix computation dimensions

» Optimal-performing code variant depends both on the
specific platform and the specific problem parameters

» Need to develop an automatic selection mechanism that
intelligently selects between the code variants based on
problem and platform parameters

Agglomerative Hierarchical Clustering

Example Application Code

for M in reversed(range(M_end, M_start)):
likelihood = self.gmm.train(self.X)

#compute rissanen score for this gmm with M clusters
rissanen = -likelihood + ©.5*(sel®.gmm.M*(1+sel®.gmm.D+0.5*(sel®.gmm.D+1)*se

#find closes sters and merge
if M > 0: #don't merge if there is only one cluster

for ¢l in range(®, self.gmm.M):
for €2 in range(cl+l, self.gmm.M):
new_cluster, dist = self.gmm.compute_distance_rissanen(cl, ¢
gnm_list.append((dist, (cl, c2, new_cluster)))

#####

« Perform GMM training within
an outer loop that decreases
number of clusters

1£.gmm.D)-1)*math.log(sel¥.N*sel¥.gmm.D); ® Se | eCt beSt Hflttl ngH G M M _

number of clusters that best
describes the event data

« Used in speaker diarization
— unsupervised identification
of speakers in an audio

sample

Probability Computation

X = get_data()

means, covars = get_model()
gnm = GMM(M, D, means, covars)
Y = gmm.predict(X)

« Compute the probability of
observing an event given the
trained model

« Used in speech recognition to
compute the observation
probability of an audio sample

Results

Evaluation platforms:
» GTX480 (Fermi)
14 SM, 32 SIMD, 48K shared mem, 3GB

D =6, N =90000 D =31, N =90000
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GTX 285
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» Code variant selection gave at least 309 performance improvement for
problem sizes tested — with larger problems the improvement increases

oy

N thread Sequential loop for blockldx.y, sequential thread
each thread loop for each thread
within block
M blockldx.x blockldx.x blockldx.x Sequential loop
D blockldx.y thread thread blockldx.x
SH Means for each Means for each cluster, | Means for each cluster, Events (if small),
MEM cluster Covariance matrix Partial covariance Means for all
matrix clusters

Future Work

» More intelligent code variant selection mechanism, given
platform and problem parameters:

- Pull from existing database of best-performing code variants
- Use machine learning to predict the best-performing code variant
» Expand framework to specialize other GMM computations:
- Probability computation
- Cluster distance computation functions (BIC, AlIC)

» Expand framework to other applications (computer vision,
data mining) and architectures (OpenCL, RISC-V)

» Performance improvement of the GMM framework for
particular application common use cases to reduce overhead




