
Katya Gonina, Henry Cook, Adam Jiang, Shoaib Kamil, Gerald Friedland, Armando Fox, David Pa>erson  Parallel Computing Lab

Gaussian Mixture Models (GMM)

Covariance Matrix Computation
Code Variants

Results

Example Application Code

SEJIT Specializer Framework

Future Work

Agglomerative Hierarchical Clustering Probability Computation

 Probabilistic model for clustering data
  Assumes the distribution of observations

follows a mixture of multidimensional
Gaussian distributions

  Each Gaussian in the mixture has a mean
(μ) and a variance (σ) parameter, as well
as a weight (π)

 Example applications
  Speech Recognition – speaker classification,

acoustic modeling for speech recognition
  Computer Vision – image segmentation,

hand writing recognition
  Biology – flow cytometry
  Data mining – topics in documents

 Given a set of observations/events: find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (µ, σ ,π) and classify observations

 Expectation Maximization (EM) Algorithm
  E step

  Compute probabilities of events given model parameters

  M step
  Compute model parameters given probabilities
  Weights, mean, covariance matrix

  Iterate until convergence

GMM Training (EM algorithm)

 Problem parameters:
  N – number of events, ~10K-100K

  D – event dimension, ~10-40

  M – number of Gaussians (clusters), ~1-128

  Matrix is symmetric – only compute the lower
D*D/2 cells

 Specialization of the covariance matrix computation

M

€

µy

y

€

µ

*

  Python code handles application
  Manipulates problem data, determines ML targets

  C code that runs quickly on the CPU
  Allocates GPU memory
  Performs main EM iterative loop

  Until convergence, call E step(s) and M step(s)
  Calls variants of mstep_covariance(events, GMM_model)

  CUDA code that runs quickly on the GPU
  Defines GPU kernels and their operation
  Contains kernel code variants

Evaluation platforms:
  GTX480 (Fermi)

  14 SM, 32 SIMD, 48K shared mem, 3GB

GTX 285
  30 SM, 8 SIMD, 16K shared mem, 1GB DRAM

CV: 1 2 2b 3

N thread Sequential loop for
each thread

blockIdx.y, sequential
loop for each thread

within block

thread

M blockIdx.x blockIdx.x blockIdx.x Sequential loop

D blockIdx.y thread thread blockIdx.x

SH
MEM

Means for each
cluster

Means for each cluster,
Covariance matrix

Means for each cluster,
Partial covariance

matrix

Events (if small),
Means for all

clusters

 Platform parameters
(GPU):

  Number of SMs

  Number of SIMD vector lanes

  Size of per-block shared memory

  Size of global memory

 Optimal-performing code variant depends both on the
specific platform and the specific problem parameters

 Need to develop an automatic selection mechanism that
intelligently selects between the code variants based on
problem and platform parameters

Covariance matrix computation dimensions

 High level goal: automatically transform high-level abstraction of a machine learning
algorithm to highly efficient parallel code

  Application code is written in Python
  Specialization is done by:

  Creating templates for both the host and device
(CPU and GPU) code in C and CUDA

  Filling templates with the correct code variant
and associated runtime parameters

  ASP Specializer (Mako, CodePy, PyUBLAS)
  Takes in the problem and platform parameters
  Selects appropriate code variant (currently tries

all and remembers best-performing one)
  Pulls in the template for the code variant,

parameterizes it and compiles to binary

General Specializer Setup Code Domains

Data Sharing and Allocation

  To allow trained parameters to be read in Python after
training, we pass references to data allocated in
Python to C

  C code allocates GPU memory and temporary data
structures on the CPU, performs training, and copies
the data back

  Allocate new event data on demand – i.e. if we’re
training models on the same data in a loop, we do not
allocate and copy event data every iteration

•  Perform GMM training within
an outer loop that decreases
number of clusters

•  Select best “fitting” GMM –
number of clusters that best
describes the event data

•  Used in speaker diarization
– unsupervised identification
of speakers in an audio
sample

•  Compute the probability of
observing an event given the
trained model

•  Used in speech recognition to
compute the observation
probability of an audio sample

  Code variant selection gave at least 30% performance improvement for
problem sizes tested – with larger problems the improvement increases

  More intelligent code variant selection mechanism, given
platform and problem parameters:

 - Pull from existing database of best-performing code variants

 - Use machine learning to predict the best-performing code variant

  Expand framework to specialize other GMM computations:
 - Probability computation

 - Cluster distance computation functions (BIC, AIC)

  Expand framework to other applications (computer vision,
data mining) and architectures (OpenCL, RISC-V)

  Performance improvement of the GMM framework for
particular application common use cases to reduce overhead

D = 6, N = 90000 D = 31, N = 90000

