
Katya Gonina, Henry Cook, Adam Jiang, Shoaib Kamil, Gerald Friedland, Armando Fox, David Pa>erson  Parallel Computing Lab

Gaussian Mixture Models (GMM)

Covariance Matrix Computation
Code Variants

Results

Example Application Code

SEJIT Specializer Framework

Future Work

Agglomerative Hierarchical Clustering Probability Computation

 Probabilistic model for clustering data
  Assumes the distribution of observations

follows a mixture of multidimensional
Gaussian distributions

  Each Gaussian in the mixture has a mean
(μ) and a variance (σ) parameter, as well
as a weight (π)

 Example applications
  Speech Recognition – speaker classification,

acoustic modeling for speech recognition
  Computer Vision – image segmentation,

hand writing recognition
  Biology – flow cytometry
  Data mining – topics in documents

 Given a set of observations/events: find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (µ, σ ,π) and classify observations

 Expectation Maximization (EM) Algorithm
  E step

  Compute probabilities of events given model parameters

  M step
  Compute model parameters given probabilities
  Weights, mean, covariance matrix

  Iterate until convergence

GMM Training (EM algorithm)

 Problem parameters:
  N – number of events, ~10K-100K

  D – event dimension, ~10-40

  M – number of Gaussians (clusters), ~1-128

  Matrix is symmetric – only compute the lower
D*D/2 cells

 Specialization of the covariance matrix computation

M

€

µy

y

€

µ

*

  Python code handles application
  Manipulates problem data, determines ML targets

  C code that runs quickly on the CPU
  Allocates GPU memory
  Performs main EM iterative loop

  Until convergence, call E step(s) and M step(s)
  Calls variants of mstep_covariance(events, GMM_model)

  CUDA code that runs quickly on the GPU
  Defines GPU kernels and their operation
  Contains kernel code variants

Evaluation platforms:
  GTX480 (Fermi)

  14 SM, 32 SIMD, 48K shared mem, 3GB

GTX 285
  30 SM, 8 SIMD, 16K shared mem, 1GB DRAM

CV: 1 2 2b 3

N thread Sequential loop for
each thread

blockIdx.y, sequential
loop for each thread

within block

thread

M blockIdx.x blockIdx.x blockIdx.x Sequential loop

D blockIdx.y thread thread blockIdx.x

SH
MEM

Means for each
cluster

Means for each cluster,
Covariance matrix

Means for each cluster,
Partial covariance

matrix

Events (if small),
Means for all

clusters

 Platform parameters
(GPU):

  Number of SMs

  Number of SIMD vector lanes

  Size of per-block shared memory

  Size of global memory

 Optimal-performing code variant depends both on the
specific platform and the specific problem parameters

 Need to develop an automatic selection mechanism that
intelligently selects between the code variants based on
problem and platform parameters

Covariance matrix computation dimensions

 High level goal: automatically transform high-level abstraction of a machine learning
algorithm to highly efficient parallel code

  Application code is written in Python
  Specialization is done by:

  Creating templates for both the host and device
(CPU and GPU) code in C and CUDA

  Filling templates with the correct code variant
and associated runtime parameters

  ASP Specializer (Mako, CodePy, PyUBLAS)
  Takes in the problem and platform parameters
  Selects appropriate code variant (currently tries

all and remembers best-performing one)
  Pulls in the template for the code variant,

parameterizes it and compiles to binary

General Specializer Setup Code Domains

Data Sharing and Allocation

  To allow trained parameters to be read in Python after
training, we pass references to data allocated in
Python to C

  C code allocates GPU memory and temporary data
structures on the CPU, performs training, and copies
the data back

  Allocate new event data on demand – i.e. if we’re
training models on the same data in a loop, we do not
allocate and copy event data every iteration

•  Perform GMM training within
an outer loop that decreases
number of clusters

•  Select best “fitting” GMM –
number of clusters that best
describes the event data

•  Used in speaker diarization
– unsupervised identification
of speakers in an audio
sample

•  Compute the probability of
observing an event given the
trained model

•  Used in speech recognition to
compute the observation
probability of an audio sample

  Code variant selection gave at least 30% performance improvement for
problem sizes tested – with larger problems the improvement increases

  More intelligent code variant selection mechanism, given
platform and problem parameters:

 - Pull from existing database of best-performing code variants

 - Use machine learning to predict the best-performing code variant

  Expand framework to specialize other GMM computations:
 - Probability computation

 - Cluster distance computation functions (BIC, AIC)

  Expand framework to other applications (computer vision,
data mining) and architectures (OpenCL, RISC-V)

  Performance improvement of the GMM framework for
particular application common use cases to reduce overhead

D = 6, N = 90000 D = 31, N = 90000

