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Agglomerative Hierarchical Clustering Probability Computation 

 Probabilistic model for clustering data 
  Assumes the distribution of  observations 

follows a mixture of  multidimensional 
Gaussian distributions 

  Each Gaussian in the mixture has a mean 
(μ) and a variance (σ) parameter, as well 
as a weight (π) 

 Example applications 
  Speech Recognition – speaker classification, 

acoustic modeling for speech recognition 
  Computer Vision – image segmentation, 

hand writing recognition  
  Biology – flow cytometry  
  Data mining – topics in documents  

 Given a set of  observations/events: find the maximum 
likelihood estimates of  the set of  Gaussian Mixture 
parameters (µ, σ ,π) and classify observations 

 Expectation Maximization (EM) Algorithm 
  E step 

  Compute probabilities of  events given model parameters 

  M step 
  Compute model parameters given probabilities 
  Weights, mean, covariance matrix  

  Iterate until convergence 

GMM Training (EM algorithm) 

 Problem parameters: 
  N – number of  events, ~10K-100K 

  D – event dimension, ~10-40 

  M – number of  Gaussians (clusters), ~1-128 

  Matrix is symmetric – only compute the lower 
D*D/2 cells 

 Specialization of  the covariance matrix computation  
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  Python code handles application 
  Manipulates problem data, determines ML targets 

  C code that runs quickly on the CPU 
  Allocates GPU memory 
  Performs main EM iterative loop 

  Until convergence, call E step(s) and M step(s) 
  Calls variants of  mstep_covariance(events, GMM_model) 

  CUDA code that runs quickly on the GPU 
  Defines GPU kernels and their operation 
  Contains kernel code variants 

Evaluation platforms:  
  GTX480 (Fermi) 

  14 SM, 32 SIMD, 48K shared mem, 3GB  

GTX 285 
  30 SM, 8 SIMD, 16K shared mem, 1GB DRAM 
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 Platform parameters 
(GPU): 

  Number of  SMs  

  Number of  SIMD vector lanes 

  Size of  per-block shared memory 

  Size of  global memory 

 Optimal-performing code variant depends both on the 
specific platform and the specific problem parameters 

 Need to develop an automatic selection mechanism that 
intelligently selects between the code variants based on 
problem and platform parameters   

Covariance matrix computation dimensions 

 High level goal: automatically transform high-level abstraction of a machine learning 
algorithm to highly efficient parallel code 

  Application code is written in Python 
  Specialization is done by: 

  Creating templates for both the host and device 
(CPU and GPU) code in C and CUDA 

  Filling templates with the correct code variant 
and associated runtime parameters 

  ASP Specializer (Mako, CodePy, PyUBLAS) 
  Takes in the problem and platform parameters 
  Selects appropriate code variant (currently tries 

all and remembers best-performing one) 
  Pulls in the template for the code variant, 

parameterizes it and compiles to binary 

General Specializer Setup Code Domains 

Data Sharing and Allocation 

  To allow trained parameters to be read in Python after 
training, we pass references to data allocated in 
Python to C 

  C code allocates GPU memory and temporary data 
structures on the CPU, performs training, and copies 
the data back 

  Allocate new event data on demand – i.e. if  we’re 
training models on the same data in a loop, we do not 
allocate and copy event data every iteration 

•  Perform GMM training within 
an outer loop that decreases 
number of  clusters 

•  Select best “fitting” GMM – 
number of  clusters that best 
describes the event data 

•   Used in speaker diarization 
– unsupervised identification 
of  speakers in an audio 
sample 

•  Compute the probability of  
observing  an event given the 
trained model 

•  Used in speech recognition to 
compute the observation 
probability of  an audio sample     

  Code variant selection gave at least 30% performance improvement for 
problem sizes tested – with larger problems the improvement increases 

  More intelligent code variant selection mechanism, given 
platform and problem parameters: 

    - Pull from existing database of  best-performing code variants 

    - Use machine learning to predict the best-performing code variant 

  Expand framework to specialize other GMM computations: 
     - Probability computation 

     - Cluster distance computation functions (BIC, AIC)  

  Expand framework to other applications (computer vision, 
data mining) and architectures (OpenCL, RISC-V) 

  Performance improvement of  the GMM framework for 
particular application common use cases to reduce overhead 

D = 6, N = 90000 D = 31, N = 90000 


