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Agglomerative Hierarchical Clustering Probability Computation 

 Probabilistic model for clustering data 
  Assumes the distribution of  observations 

follows a mixture of  multidimensional 
Gaussian distributions 

  Each Gaussian in the mixture has a mean 
(μ) and a variance (σ) parameter, as well 
as a weight (π) 

 Example applications 
  Speech Recognition – speaker classification, 

acoustic modeling for speech recognition 
  Computer Vision – image segmentation, 

hand writing recognition  
  Biology – flow cytometry  
  Data mining – topics in documents  

 Given a set of  observations/events: find the maximum 
likelihood estimates of  the set of  Gaussian Mixture 
parameters (µ, σ ,π) and classify observations 

 Expectation Maximization (EM) Algorithm 
  E step 

  Compute probabilities of  events given model parameters 

  M step 
  Compute model parameters given probabilities 
  Weights, mean, covariance matrix  

  Iterate until convergence 

GMM Training (EM algorithm) 

 Problem parameters: 
  N – number of  events, ~10K-100K 

  D – event dimension, ~10-40 

  M – number of  Gaussians (clusters), ~1-128 

  Matrix is symmetric – only compute the lower 
D*D/2 cells 

 Specialization of  the covariance matrix computation  
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  Python code handles application 
  Manipulates problem data, determines ML targets 

  C code that runs quickly on the CPU 
  Allocates GPU memory 
  Performs main EM iterative loop 

  Until convergence, call E step(s) and M step(s) 
  Calls variants of  mstep_covariance(events, GMM_model) 

  CUDA code that runs quickly on the GPU 
  Defines GPU kernels and their operation 
  Contains kernel code variants 

Evaluation platforms:  
  GTX480 (Fermi) 

  14 SM, 32 SIMD, 48K shared mem, 3GB  

GTX 285 
  30 SM, 8 SIMD, 16K shared mem, 1GB DRAM 
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 Platform parameters 
(GPU): 

  Number of  SMs  

  Number of  SIMD vector lanes 

  Size of  per-block shared memory 

  Size of  global memory 

 Optimal-performing code variant depends both on the 
specific platform and the specific problem parameters 

 Need to develop an automatic selection mechanism that 
intelligently selects between the code variants based on 
problem and platform parameters   

Covariance matrix computation dimensions 

 High level goal: automatically transform high-level abstraction of a machine learning 
algorithm to highly efficient parallel code 

  Application code is written in Python 
  Specialization is done by: 

  Creating templates for both the host and device 
(CPU and GPU) code in C and CUDA 

  Filling templates with the correct code variant 
and associated runtime parameters 

  ASP Specializer (Mako, CodePy, PyUBLAS) 
  Takes in the problem and platform parameters 
  Selects appropriate code variant (currently tries 

all and remembers best-performing one) 
  Pulls in the template for the code variant, 

parameterizes it and compiles to binary 

General Specializer Setup Code Domains 

Data Sharing and Allocation 

  To allow trained parameters to be read in Python after 
training, we pass references to data allocated in 
Python to C 

  C code allocates GPU memory and temporary data 
structures on the CPU, performs training, and copies 
the data back 

  Allocate new event data on demand – i.e. if  we’re 
training models on the same data in a loop, we do not 
allocate and copy event data every iteration 

•  Perform GMM training within 
an outer loop that decreases 
number of  clusters 

•  Select best “fitting” GMM – 
number of  clusters that best 
describes the event data 

•   Used in speaker diarization 
– unsupervised identification 
of  speakers in an audio 
sample 

•  Compute the probability of  
observing  an event given the 
trained model 

•  Used in speech recognition to 
compute the observation 
probability of  an audio sample     

  Code variant selection gave at least 30% performance improvement for 
problem sizes tested – with larger problems the improvement increases 

  More intelligent code variant selection mechanism, given 
platform and problem parameters: 

    - Pull from existing database of  best-performing code variants 

    - Use machine learning to predict the best-performing code variant 

  Expand framework to specialize other GMM computations: 
     - Probability computation 

     - Cluster distance computation functions (BIC, AIC)  

  Expand framework to other applications (computer vision, 
data mining) and architectures (OpenCL, RISC-V) 

  Performance improvement of  the GMM framework for 
particular application common use cases to reduce overhead 

D = 6, N = 90000 D = 31, N = 90000 


