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Scalability 

Parallel scalability:  
 The ability for an application to efficiently utilize an 

increasing number of processing elements 

Parallel scalability is required for software to obtain sustained performance 
improvements on successive generations of processors 

 
 

Intel Core i7 (45nm) 
4 cores 

NVIDIA GTX280 and GTX480 
30 and 14 cores 
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Parallel Platform Characteristics 

Core 

 Multicore/manycore design philosophy  
 Multicore: Devote significant transistor resources 

to single thread performance  

 Manycore: Maximizing computation throughput at 
the expense of single thread performance 

 Architecture Trend: 
 Increasing vector unit width (SIMD) 
 Increasing numbers of cores per die 

 Application Implications: 
 Must increase data access regularity  
 Must optimize synchronization cost  
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We explore a design space for  
application scalability for a speech 
inference engine on multicore and 

manycore platforms 
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Devoting significant transistor resources for complex features for accelerating single thread performanceWhatare the Manycore Characteristics we are designing for?Increasing SIMD-width, or Wrap-sizeIncreasing number of cores or CTAsMultiple levels of parallelismSIMD level: 	share instruction decode, load/store logic	energy efficient way to increase peak throughputCore level: share memory controller, cache, I/OComplex synchronization hierarchySIMD level: private cacheCore level: cache coherency protocol synchronizationMultiple cache hierarchyManage working set to avoid unnecessary cache capacity missesVarying amount of parallelismManage differing SIMD width and core count among manycore platformsSoftware faced with two challenges: Must understand parallelism in apps Must understand implementation tradeoffs
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Continuous Speech Recognition 

 Challenges:  
 Recognizing words from a large vocabulary arranged  in exponentially many 

possible permutations 
 Inferring word boundaries from the context of neighboring words 

 Viterbi algorithm on Hidden Markov Models (HMM) is currently the most 
popular approach 

phone 
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Recognize a sequence of phonemes Inferring the most likely word sequence among a set of possible hypothesisDifferent than command-and-control, challenging conditionsThis work focuses on LVCSR.A speech recognition problem can be defined in terms of the set of possible word hypotheses that can beinferred from an acoustic observation signal. The simplest inference problem is an isolated word recognitiontask, such as discriminating between a “yes” or “no” in an interactive voice response system; such a task canbe solved by many techniques, generally with modest computational effort. By contrast, large vocabularycontinuous speech recognition (LVCSR) is a much more difficult problem: for example, the objective might beto provide a transcription to serve as closed captions for a television recording. LVCSR systems must be able torecognize words from a very large vocabulary arranged in exponentially many permutations, without knowingthe boundary segmentation between words.



Continuous Speech Recognition 

 Inference engine system 
 Used in Sphinx (CMU, USA), HTK (Cambridge, UK), and Julius (CSRC, Japan) 

 Modular and flexible setup 
 Shown to be effective for Arabic, English, Japanese, and Mandarin 
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Extract discriminate features from waveformExamine input sequence one at a time, in the context of prior features in the sequenceInfer the most likely word sequence based on the Recognition NetworkGoal of Research: increase accuracy – feature computation/faster inference engineChris Oei on Acoustic model trainingGiven a test input, a few important factors contributing to accurate speech recognition:- How recognition network is constructed and trained How discriminating features are extracted How heavily are the most likely path prunedOne effective algorithm for LVCSR is the Hidden Markov Model (HMM) based Viterbi inference with beam search [5], which is the standard approach used in major speech recognition projects such as SPHINX, HTK, and Julius [10, 15, 9]. Figure shows the major components of such a system. A LVCSR system uses a recognition network that is compiled offline from a variety of knowledge sources using powerful statistical learning techniques. Spectral-based speech features are extracted by signal-processing the audio input and presented to an inference engine. The recognition network is loaded into memory during initialization, and the inference engine then computes the most likely word sequence based on the extracted speech features and the recognition network.Acoustic model: wave features to phonesPronunciation model: phones to wordsLanguage Model: word sequencesInference engine based LVCSR systems are modular and flexible. They are language independent and robustto various acoustic environments [15, 9]: by using different recognition networks and signal-processing kernels,they have been shown to be effective for Arabic, English, Japanese, and Mandarin, in a variety of situationssuch as phone conversations, lectures, and news broadcasts.



Recognition Network 

Compiled HMM Recognition Network 
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WFST Recognition Network 
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Speech Inference: Detailed Algorithm 
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  # states: 4 million,  # arcs: 10 million,  # observations: 100/sec 
  Average # active states per time step: 10,000 – 20,000 
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ASR: Detailed Algorithm 
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Inference Engine Architecture 

 A highly hierarchical structure 
 An iterative outer loop over time steps 
 A pipeline of operations in each time step 
 A set of alternative hypothesis to advance 

One iter per 
time step: 
     (~60M inst) 

Multiple steps in a 
phase, each has: 
  1000s to 10,000s  
  concurrent tasks 
  (10 to 500 instr.)  

Phase 1 

Phase 2 

Obs prob 
compute 

Graph traversal 

Compute Intensive 
 

Communication  
Intensive 

Extensive fine-grained 
parallelism at the inner 
most level 

Sequential operation 
with iteration dependencies 



Recognition Process 

 Phase 1: 
 Observation probability 

computation 
 Highly compute intensive step  

 Phase 2: 
 Traverse out-going arcs from 

active states 
 Write contention must be 

resolved at the destination 
states 

 Destination state is updated 
with most-likely in-coming arc 

 
 

Recognition is a process of 
graph traversal 

WFST Recognition Network WFST Recognition Network WFST Recognition Network 
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Graph traversal 

Presenter
Presentation Notes
Pruning approachesIntroduce active state, and arcs emitting from the statesUse dynamic programming techniques to backtrack the most likely path at the end of recognizing an utteranceLikely sequences can be explored in parallel



Inference Engine Challenges 

 Application Challenges 
 Irregularity of network 
 Input-dependent, dynamically changing working set 

 Scalability Goals 
 Expose sufficient concurrency 
 1) Efficiently synchronize between an increasing number of concurrent tasks 
 2) Effectively utilize all levels of parallel resources, including SIMD parallelism 
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Outline 

 Characteristics of Manycore Architectures 

 Speech Recognition Application 

 Software architecture and characteristics 

 Important parallelization concerns 

 Design space explored for application scalability 

 Design Space Evaluation 

 Recognition Network Structure Evaluation 

 Conclusion 
 

Presenter
Presentation Notes
This is a work in progress:In this talk,  Hardware: left tower Application: right tower Software Transformation: Bridge span Implications to Parallel Programming



Core Level Synchronization 

 Challenge: 
 The cost for write conflict resolution can dominate runtime 

 Experiment: 
 Allow traversal to either propagate from source or aggregate 

at destination for write conflict resolution 
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Synchronization Cost 

 The fixed cost (overhead) of 
aggregation technique is 
significant 

 Relative gradient of propagation 
and aggregation techniques 
depend on the efficiency of the 
platform in resolving write conflicts 

 If no hardware atomics are 
available, using spin locks and 
semaphores will be costly 

 If data structure requires multiple 
writes to the same destination 
states, significant contention can 
occur 
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 Propagation with atomic 
memory ops causing contention  
 leading to access serialization 



SIMD Utilization Efficiency 

 Challenge: 
 Vector unit efficiency can quickly drop off with increased vector width 

 Experiment: 
 Traverse the recognition network based on active states or active 

arcs 
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Design Space 

Traversal by Propagation Traversal by Aggregation 

Active States 
 

Maintain active source states, 
propagate out-arc computation 

results to destination state 

Maintain active destination states, 
determine all potential destination 
states and aggregate incoming arcs 

Active Arcs 
 

Maintain active arcs, propagate active 
arc computation results to destination 

state 
 

Maintain active arcs, group arcs with 
same destination states and 

aggregate active arcs locally to resolve 
write conflicts 

Current States Next States Current States Next States 

Current States Next States Current States Next States 
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Hardware Platform 

Specifications Core i7920 
 

GTX280 
 

Processing Elements 
4 cores (SMT), 4 

way SIMD 
@2.66 GHz 

30 cores, 8 way 
physical, 32 way 

logical SIMD 
@1.3 GHz 

SP GFLOP/s 85.1 933 

Memory Bandwidth 25.6 GB/s 141 GB/s 

Register File - 1.875 MB 

Local Store - 480 kB 
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Efficiency vs Platform 



Recognition Accuracy 

 Avg. # of Active States 32820 20000 10139 3518 

 Word Error Rate 41.6 41.8 42.2 44.5 

RTF 

 Sequential 4.36 3.17 2.29 1.2 

 Multicore 1.23 0.93 0.70 0.39 

 Manycore 0.40 0.30 0.23 0.18 

Presenter
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As shown in Table, the multicore and manycoreimplementation can achieve significant speedup for the same numberof active states. More importantly, for the same real time factor(RTF), parallel implementations provide a higher recognitionaccuracy.  For a RTF of 1.2, accuracy improves from 44.5\% to41.6\% WER going from a sequential to a multicore implementation.For a RTF of 0.4, accuracy improves from 44.5\% to 41.6\% WERgoing from a multicore implementation to manycore implementation.



Overall Speedup 

 Speed up varies between phases 
 4-20x for compute intensive phases 
 3-4x for communication intensive phases 
 Communication intensive phases becoming proportionally more 

important 
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Squential
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51.0% Communication Intensive  

Decoding 
Time per 

Second of 
Speech  

3.4x 

10.5x 



Synchronization Cost 
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SIMD Utilization Efficiency 

State Based Arc Based 

Time taken 756.79 ms 81.74 ms 

Speedup 1x 9.25x 
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Recognition Network Representation 

 Significant effort put into optimizing recognition 
networks 
 Starting at baseline Linear Lexical Models 
 One chain of states per word 

 Tree-lexical 
 Finite state machine techniques to construct WFST 

 

What implications does the structure have on 
efficiency of parallel speech inference algorithms? 



Linear-Lexical Model vs WFST 



Inference Implementation Using LLM Network 

 Explicitly handles two types of transitions 
 Within-word 
 Across-word 

 Optimized data layout for each type 
 First states for each word stored consecutive for across-

word transitions 
 Chains of within-word states stored as a chain 

 Across-word transitions – all-to-all dense 
computation 
 Extremely efficient on the GPU 

 



Results 
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Execution Time 

Data Gathering Observation Prob Graph Traversal Sequential Overhead 
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Conclusions 

 Scalable software architecture for speech 
recognition inference engine  
 2.5% sequential overhead 

 Explored algorithmic design space 
 Fastest algorithm depends on platform 
 Core synchronization and SIMD optimization are 

important for scalability 
 Explored recognition network representation 
 Simpler, more regular LLM representation very 

competitive with highly-optimized, more irregular 
WFST  

 



Current and Future Work 

 Efficient training of acoustic models (GMMs) 
 Productive parallel computing for application writers 
 Not have to go through this process every time 

 Automating parallelization techniques 
 High-level code transformation 
 Just-in-time compilation 
 Code variant selection 

 What is the best (parallel) platform for a particular 
algorithm? 
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Hidden Markov Model 

 In the Hidden Markov Model, states are hidden, 
because phones are indirectly observed 

 One must infer the most likely interpretation of the 
signal while taking the model of the underlying 
language into account 
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Recognize                                                                               Speech 
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Detailed Speedup: Multicore 

43 

State-based Aggregation 
RTF: 2.593; 1.2x 

Arc-based Propagation 
RTF: 1.006; 3.2x 

State-based Propagation 
RTF: 0.925; 3.4x 
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0.073

Sequential 
RTF: 3.17; 1x 

Presenter
Presentation Notes
Ratio are similar



Detailed Speedup: Manycore 

44 

 

Arc-based Aggregation 
RTF: 0.912; 3.5x 

State-based Aggregation 
RTF: 1.203; 2.6x 

Arc-based Propagation 
RTF: 0.302; 10.5x 

State-based Propagation 
RTF:0.776; 4.1x 
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0.008
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0.008
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0.014
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RTF: 3.17; 1x 

RTF:  Real Time 
Factor 

3.4x: Speedup 
vsSeq 

   Phase 1 
  Phase 2 
  Phase 3 
  Seq. 
Overhead 



Next Steps 

 Experiment on two more sets of models 
 Telephone conversations (optimizing for batch model 

processing) 
 News Broadcast (optimizing for real time processing) 

 
 Construct the application framework for domain 

experts to develop speech applications 
 Search for industry use cases to substantiate usage 

scenarios 
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LVCSR Application Framework 

46 

Top Level Attributes 
 

Customizable attributes: 
• Recognition network 

structure 
• Input waveform format 
• Output word sequence 

format 
 

Data Structure: 
•  Feature vector format 

 

Fixed Structure: 
•  Feature extractor 
•  Inference engine 
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Customizable Functions: 
• Observation/Arc probability computation 
• Pruning heuristics 
• Track back data logging 
 

Framework architecture customization: 
• States vs arc based traversal 
• Propagate vs aggregate traversal techniques 

 
 
 

Feature Extractor 
 

Customizable Function: 
• Feature extraction algorithm 

 
 



Frameworks for Parallel 
Programming 
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Discussion: Load Balancing 

 Core level load balancing is an important issue 
 Many prior work has been limited by across core work load imbalance 

 Application developers want to expose parallelism, not managing the 
detail 
 Best solved by implementation platform support 

 
 Multicore: 

 Task queue abstraction with distributed queue  
and lazy work stealing [15] 
 

 Manycore: 
 Hardware managed dynamic load balancing 

based on the CUDA runtime environment [16] 
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Discussion: Memory Hierarchy 

 Currently, the memory hierarchy differs significantly between Intel multicore and 
NVIDIA manycore 
 Requires different data structure for optimal performance 

 Multicore:  
 Reference data in main memory, working set mostly cached in L3 

 Manycore:  
 Create temporary coalesced array for working set, stored in GDDR, streaming access 

Bandwidth Size 

Shared 
Memory 

1244 GB/s 
16KB Data 
per SM unit 

GDDR 141.7 GB/s 1 GB 

PCI 
Express 

2.5 GB/s Up to 24 GB 

Bandwidth Size 

L1 *340 GB/s 
32KB Data 
32KB Inst 

L2 *170 GB/s 256KB 
per core 

L3 - 8MB 

DRAM 25.6 GB/s 
6GB  

(24GB 
max) 

NVIDIA GTX 280 
Intel Core i7 



Speech Inference Engine Implementation 



Recognition Network Representation 

 Linear-Lexical Model 
(LLM) – baseline 
implementation 
 Models each word as a 

chain of triphone states 
 Highly redundant 
 Language model from 

word-to-word 
transitions 
 

 Weighted Finite State 
Transducer (WFST) 
 Combines pronunciation 

and language models  
 Takes advantage of 

sparsity of natural 
languages 

 Remove redundant 
states and arcs 

 Faster recognition speed 
on *sequential* 
processors 

 



 
Software Must Use Hardware Parallelism 

Hardware Trends Software Trends 

Presenter
Presentation Notes
Here is an illustration of the hardware technology landscape. If we look at the Intel CPU Trends over the past 40 years, we see that: # of transistors is growing exponentially Clock speed, power consumption, performance/clock has plateauedTo continue to improve compute capability while respecting the limitations of physics and economics, Hardware vendors are choosing to go parallel The current scaling trend is to provide multiple cores per chip and multiple SIMD lanes per core.On the software side, as manycore processors is going into servers, laptops and handheld devices,…we see an increase in the variety of applications that can benefit from them.…some examples of applications include, speech recognition, image contour detection, market risk analytics, medical imagingConclusion, it is very important for the software applications to be able to exploit the parallelism in the hardware,…otherwise the end-user will not be able to experience the benefit of the new generation of hardware.
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