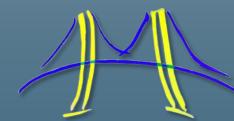
# SCALABLE LARGE-VOCABULARY CONTINUOUS SPEECH RECOGNITION

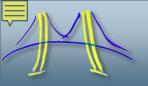
Katya Gonina with Jike Chong, Kisun You, Youngmin Yi, Kurt Keutzer & others

UC Berkeley ParLab



January 30, 2012

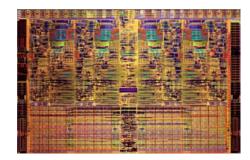




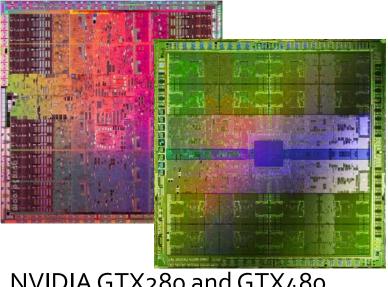
#### Scalability

#### Parallel scalability:

# The ability for an application to efficiently utilize an increasing number of processing elements



Intel Core i7 (45nm) 4 cores



NVIDIA GTX280 and GTX480 30 and 14 cores

Parallel scalability is required for software to obtain sustained performance improvements on successive generations of processors

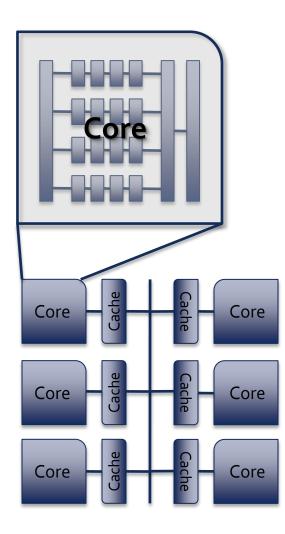


- Characteristics of Manycore Architectures
- Speech Recognition Application
  - Software architecture and characteristics
  - Important parallelization concerns
  - Design space explored for application scalability
- Design Space Evaluation
- Recognition Network Structure Evaluation
- Conclusion



- Characteristics of Manycore Architectures
- Speech Recognition Application
  - Software architecture and characteristics
  - Important parallelization concerns
  - Design space explored for application scalability
- Design Space Evaluation
- Recognition Network Structure Evaluation
- Conclusion

#### **Parallel Platform Characteristics**



- Multicore/manycore design philosophy
  - Multicore: Devote significant transistor resources to single thread performance
  - Manycore: Maximizing computation throughput at the expense of single thread performance
- Architecture Trend:
  - Increasing vector unit width (SIMD)
  - Increasing numbers of cores per die
- Application Implications:
  - Must increase data access regularity
  - Must optimize synchronization cost

We explore a *design space* for *application scalability* for a speech inference engine on multicore and manycore platforms

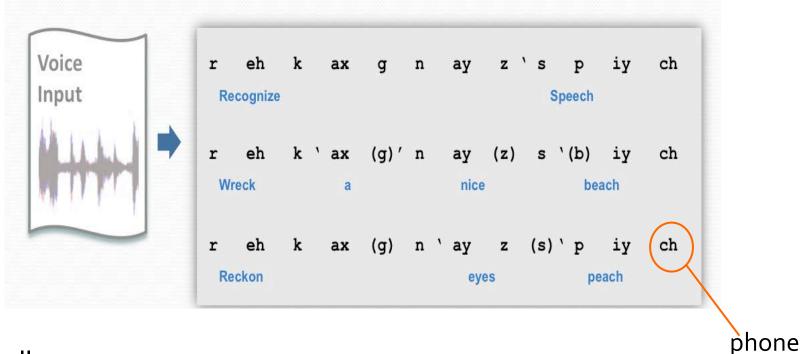


- Characteristics of Manycore Architectures
- Speech Recognition Application
  - Software architecture and characteristics
  - Important parallelization concerns
  - Design space explored for application scalability
- Design Space Evaluation
- Recognition Network Structure Evaluation
- Conclusion



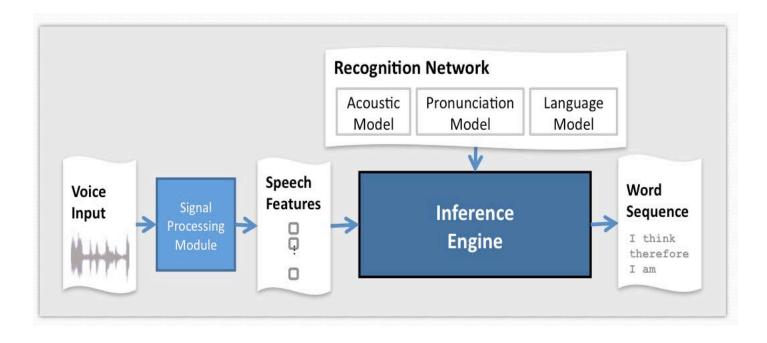
- Characteristics of Manycore Architectures
- Speech Recognition Application
  - Software architecture and characteristics
  - Important parallelization concerns
  - Design space explored for application scalability
- Design Space Evaluation
- Recognition Network Structure Evaluation
- Conclusion

# **Continuous Speech Recognition**

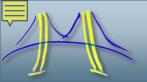


- Challenges:
  - Recognizing words from a large vocabulary arranged in exponentially many possible permutations
  - Inferring word boundaries from the context of neighboring words
- Viterbi algorithm on Hidden Markov Models (HMM) is currently the most popular approach

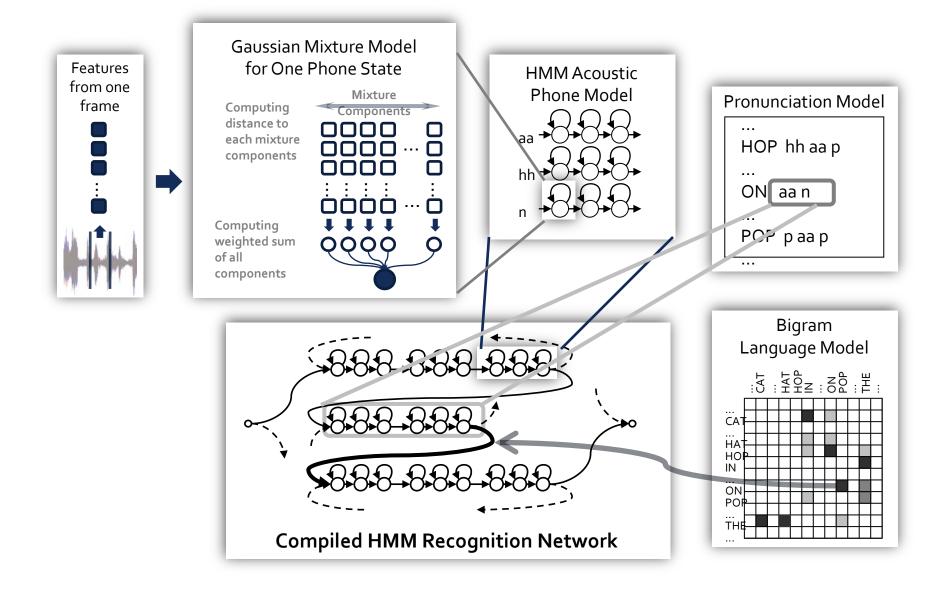
#### **Continuous Speech Recognition**

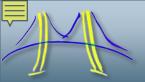


- Inference engine system
  - Used in Sphinx (CMU, USA), HTK (Cambridge, UK), and Julius (CSRC, Japan)
- Modular and flexible setup
  - Shown to be effective for Arabic, English, Japanese, and Mandarin

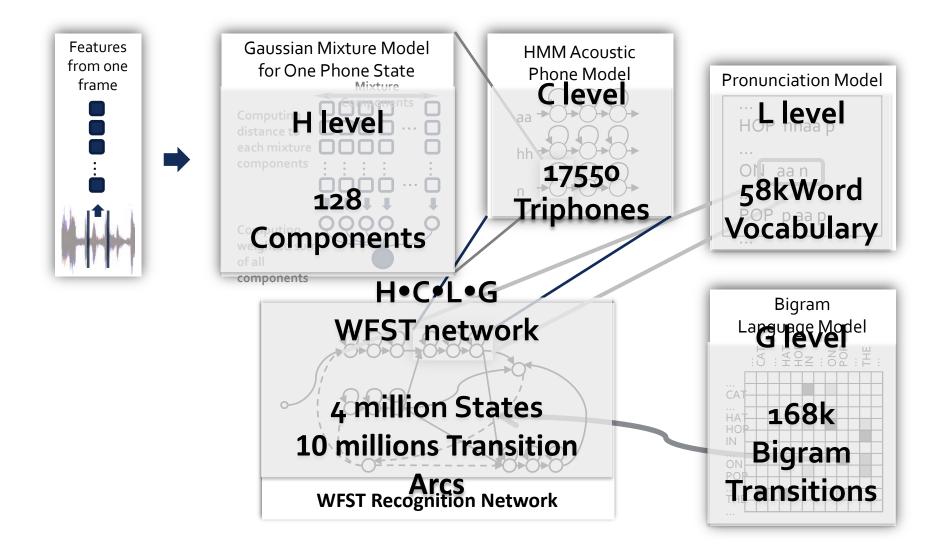


#### **Recognition Network**

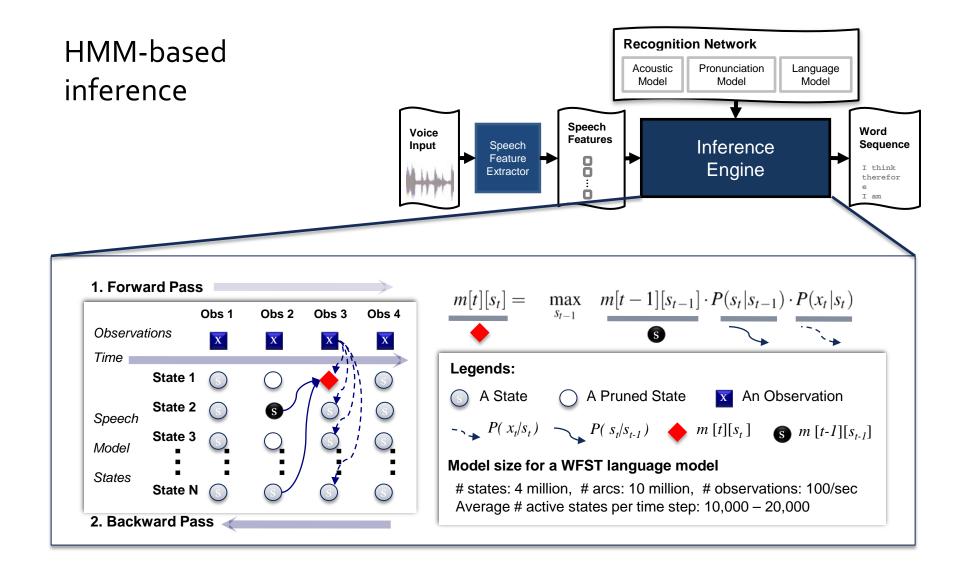




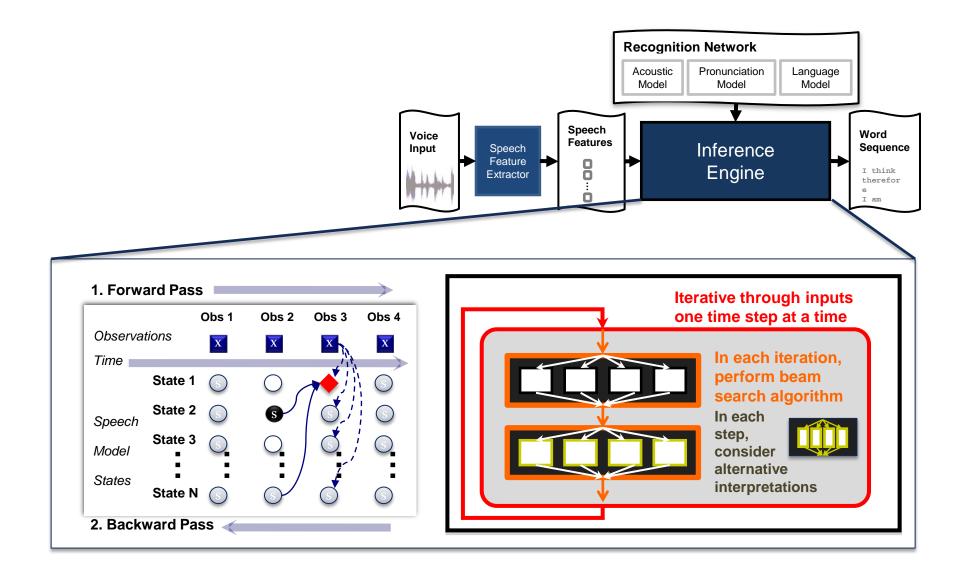
#### **Recognition Network**

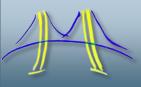


# **Speech Inference: Detailed Algorithm**



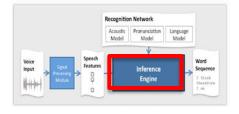
# **ASR: Detailed Algorithm**



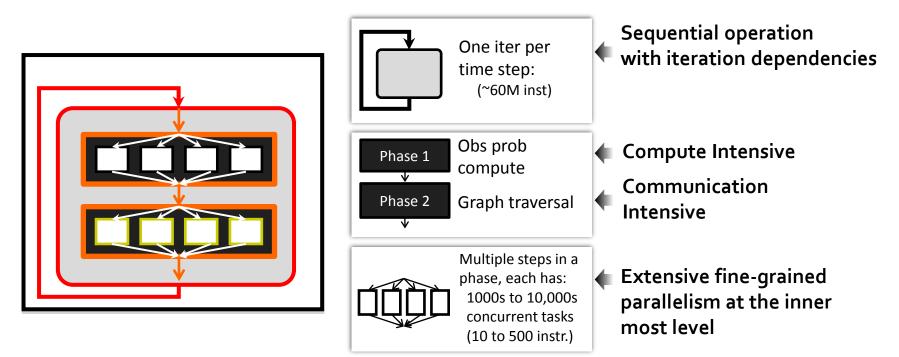


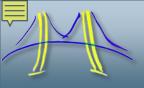
## Inference Engine Architecture

- A highly hierarchical structure
  - An iterative outer loop over time steps



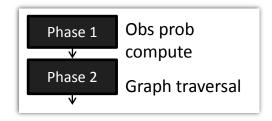
- A pipeline of operations in each time step
- A set of alternative hypothesis to advance

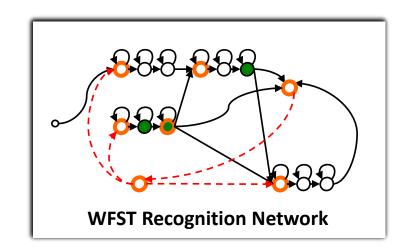




## **Recognition Process**

- Phase 1:
  - Observation probability computation
  - Highly compute intensive step
- Phase 2:
  - Traverse out-going arcs from active states
  - Write contention must be resolved at the destination states
  - Destination state is updated with most-likely in-coming arc

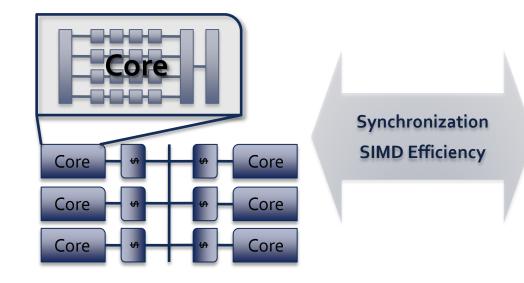


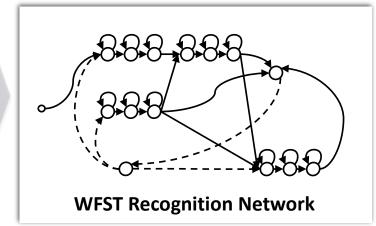


Recognition is a process of graph traversal

# Inference Engine Challenges

- Application Challenges
  - Irregularity of network
  - Input-dependent, dynamically changing working set
- Scalability Goals
  - Expose sufficient concurrency
    - 1) Efficiently synchronize between an increasing number of concurrent tasks
    - 2) Effectively utilize all levels of parallel resources, including SIMD parallelism





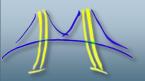


- Characteristics of Manycore Architectures
- Speech Recognition Application
  - Software architecture and characteristics
  - Important parallelization concerns
  - Design space explored for application scalability
- Design Space Evaluation
- Recognition Network Structure Evaluation
- Conclusion

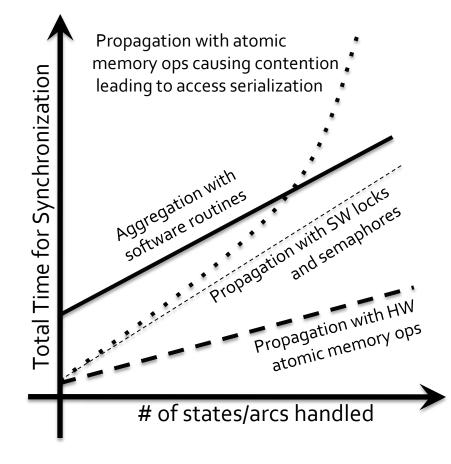
# **Core Level Synchronization**

- Challenge:
  - The cost for write conflict resolution can dominate runtime
- Experiment:
  - Allow traversal to either propagate from source or aggregate at destination for write conflict resolution

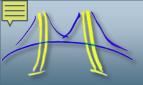
|                             | Advantages                                                         | Disadvantages                                                        | Figure                        |
|-----------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|
| Traversal by<br>Propagation | Easy to program,<br>HW handles write<br>conflicts<br>transparently | Sensitive to atomic operation latency                                | Current Next States<br>States |
| Traversal by<br>Aggregation | Explicit resolution<br>of write conflicts,<br>no atomics           | Overhead in building lists<br>of to-be-updated<br>destination states | Current Next States<br>States |



#### **Synchronization Cost**



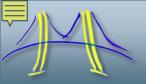
- The fixed cost (overhead) of aggregation technique is significant
- Relative gradient of *propagation* and *aggregation* techniques depend on the efficiency of the platform in resolving write conflicts
- If no hardware atomics are available, using spin locks and semaphores will be costly
- If data structure requires multiple writes to the same destination states, significant contention can occur



# **SIMD Utilization Efficiency**

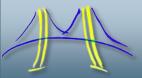
- Challenge:
  - Vector unit efficiency can quickly drop off with increased vector width
- Experiment:
  - Traverse the recognition network based on active states or active arcs

|                  | Advantages                                                     | Disadvantages                                            | Figure                        |
|------------------|----------------------------------------------------------------|----------------------------------------------------------|-------------------------------|
| Active<br>States | Easy to program,<br>all active arcs emit<br>from active states | Load-imbalance, number of arcs varies per state          | Current Next States<br>States |
| Active Arcs      | Finer granularity,<br>Load balance                             | More information to<br>maintain more arcs than<br>states | Current Next States<br>States |



# Design Space

|               | Traversal by Propagation                                                                                                      | Traversal by Aggregation                                                                                                                                          |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Active States | Current States Next States<br>Maintain active source states,<br>propagate out-arc computation<br>results to destination state | Current States Next States<br>Maintain active destination states,<br>determine all potential destination<br>states and aggregate incoming arcs                    |  |  |
| Active Arcs   | Current States Next States<br>Maintain active arcs, propagate active<br>arc computation results to destination<br>state       | Current States Next States<br>Maintain active arcs, group arcs with<br>same destination states and<br>aggregate active arcs locally to resolve<br>write conflicts |  |  |

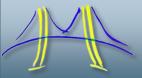


## Hardware Platform

| Specifications      | Core i7920                                | GTX280                                                          |
|---------------------|-------------------------------------------|-----------------------------------------------------------------|
| Processing Elements | 4 cores (SMT), 4<br>way SIMD<br>@2.66 GHz | 30 cores, 8 way<br>physical, 32 way<br>logical SIMD<br>@1.3 GHz |
| SP GFLOP/s          | 85.1                                      | 933                                                             |
| Memory Bandwidth    | 25.6 GB/s                                 | 141 GB/s                                                        |
| Register File       | -                                         | 1.875 MB                                                        |
| Local Store         | -                                         | 480 kB                                                          |



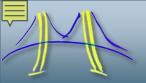
- Characteristics of Manycore Architectures
- Speech Recognition Application
  - Software architecture and characteristics
  - Important parallelization concerns
  - Design space explored for application scalability
- Design Space Evaluation
- Recognition Network Structure Evaluation
- Conclusion



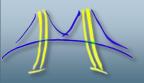
#### **Efficiency vs Platform**

#### [TABLE 3] RECOGNITION PERFORMANCE NORMALIZED FOR 1 S OF SPEECH FOR DIFFERENT ALGORITHM STYLES. SPEEDUP REPORTED OVER OPTIMIZED SEQUENTIAL VERSION OF THE PROPAGATION-BY-STATES STYLE.

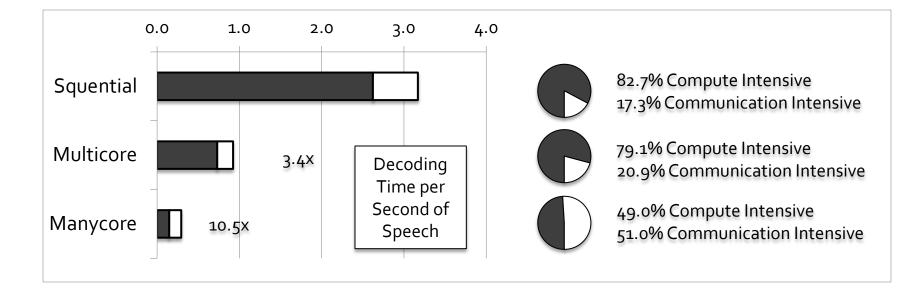
|                       | CORE i7                       | CORE i7            |                  | GTX280             |                    |                  |                    |                  |
|-----------------------|-------------------------------|--------------------|------------------|--------------------|--------------------|------------------|--------------------|------------------|
| SECONDS (%)           | SEQUENTIAL<br>PROP. BY STATES | PROP. BY<br>STATES | PROP. BY<br>ARCS | AGGR. BY<br>STATES | PROP. BY<br>STATES | PROP. BY<br>ARCS | AGGR. BY<br>STATES | AGGR. BY<br>ARCS |
| PHASE 1               | 2.623 (83%)                   | 0.732 (79%)        | 0.737 (73%)      | 0.754 (29%)        | 0.148 (19%)        | 0.148 (49%)      | 0.147 (12%)        | 0.148 (16%)      |
| PHASE 2               | 0.474 (15%)                   | 0.157 (17%)        | 0.242 (24%)      | 1.356 (52%)        | 0.512 (66%)        | 0.103 (34%)      | 0.770 (64%)        | 0.469 (51%)      |
| PHASE 3<br>SEQUENTIAL | 0.073 (2%)                    | 0.035 (4%)         | 0.026 (3%)       | 0.482 (19%)        | 0.108 (15%)        | 0.043 (14%)      | 0.272 (23%)        | 0.281 (31%)      |
| OVERHEAD              | _                             | 0.001              | 0.001            | 0.001              | 0.008 (1.0%)       | 0.008 (2.5%)     | 0.014 (1.2%)       | 0.014 (1.6%)     |
| TOTAL                 | 3.171                         | 0.925              | 1.007            | 2.593              | 0.776              | 0.301            | 1.203              | 0.912            |
| SPEEDUP               | 1                             | 3.43               | 3.15             | 1.22               | 4.08               | 10.53            | 2.64               | 3.48             |



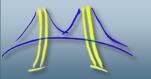
| Avg. # of Active States |            | 32820 | 20000 | 10139 | 3518 |
|-------------------------|------------|-------|-------|-------|------|
| Word Error Rate         |            | 41.6  | 41.8  | 42.2  | 44.5 |
|                         | Sequential | 4.36  | 3.17  | 2.29  | 1.2  |
| RTF                     | Multicore  | 1.23  | 0.93  | 0.70  | 0.39 |
|                         | Manycore   | 0.40  | 0.30  | 0.23  | 0.18 |



#### **Overall Speedup**

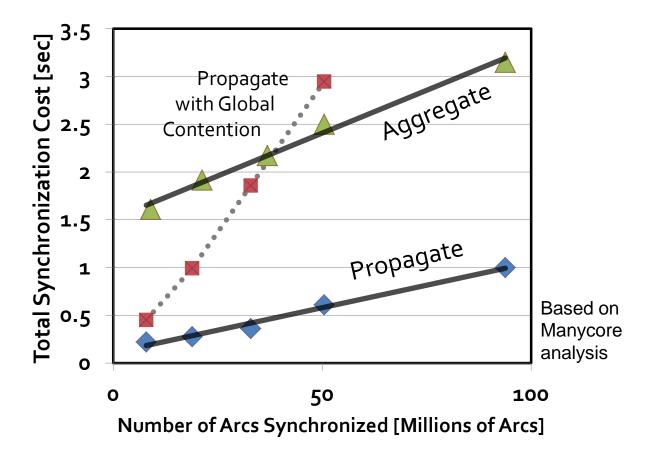


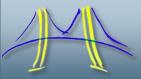
- Speed up varies between phases
  - 4-20x for compute intensive phases
  - 3-4x for communication intensive phases
  - Communication intensive phases becoming proportionally more important



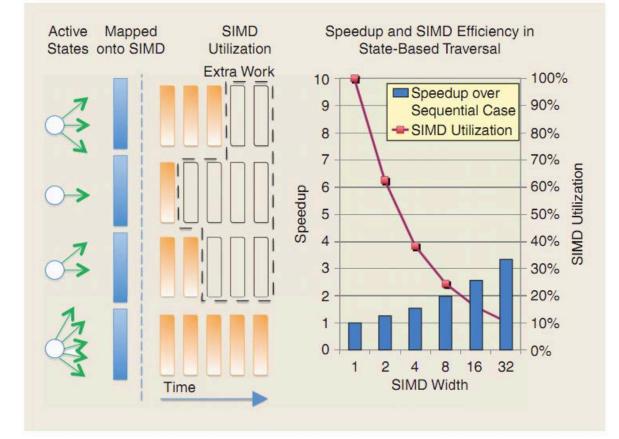
#### **Synchronization Cost**

#### Synchronization Cost in Inference Engine Graph Traversal





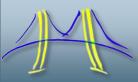
#### **SIMD Utilization Efficiency**



|            | State Based | Arc Based |
|------------|-------------|-----------|
| Time taken | 756.79 ms   | 81.74 ms  |
| Speedup    | 1X          | 9.25X     |

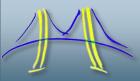


- Characteristics of Manycore Architectures
- Speech Recognition Application
  - Software architecture and characteristics
  - Important parallelization concerns
  - Design space explored for application scalability
- Design Space Evaluation
- Recognition Network Structure Evaluation
- Conclusion

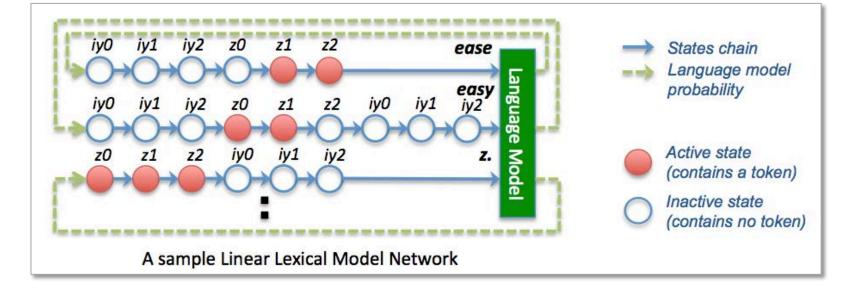


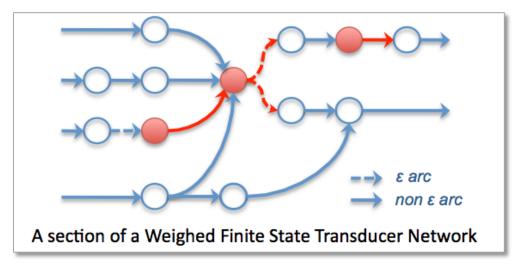
- Significant effort put into optimizing recognition networks
- Starting at baseline Linear Lexical Models
  - One chain of states per word
- Tree-lexical
- Finite state machine techniques to construct WFST

What implications does the structure have on efficiency of parallel speech inference algorithms?



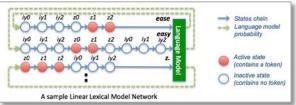
#### Linear-Lexical Model vs WFST







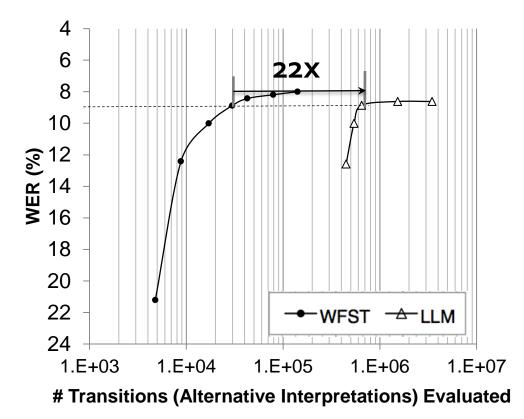
- Explicitly handles two types of transitions
  - Within-word
  - Across-word
- Optimized data layout for each type
  - First states for each word stored consecutive for acrossword transitions
  - Chains of within-word states stored as a chain
- Across-word transitions all-to-all dense computation
  - Extremely efficient on the GPU

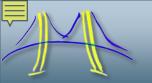




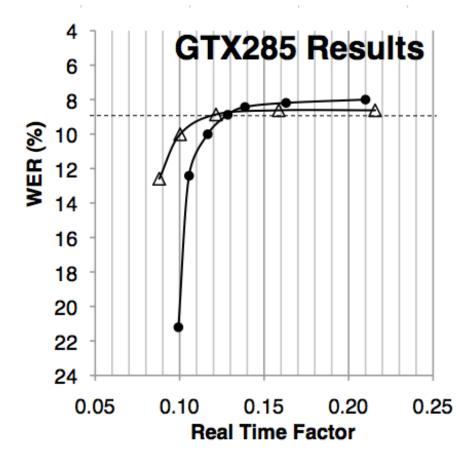
#### Wall Street Journal 5K Corpus

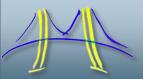
LLM vs WFST: Speed & Error Rate

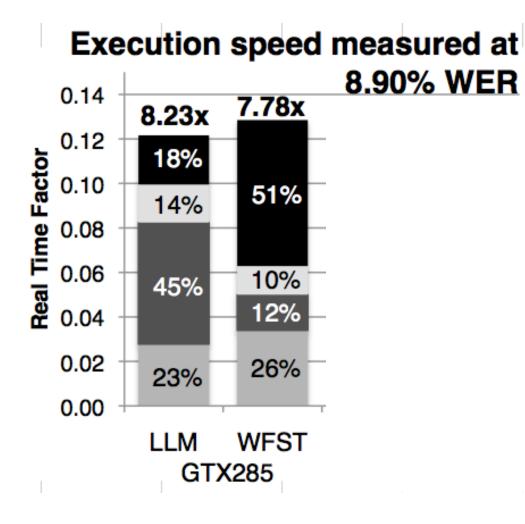


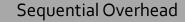


#### Results







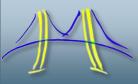




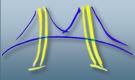
- Characteristics of Manycore Architectures
- Speech Recognition Application
  - Software architecture and characteristics
  - Important parallelization concerns
  - Design space explored for application scalability
- Design Space Evaluation
- Recognition Network Structure Evaluation
- Conclusion



- Scalable software architecture for speech recognition inference engine
  - 2.5% sequential overhead
- Explored algorithmic design space
  - Fastest algorithm depends on platform
  - Core synchronization and SIMD optimization are important for scalability
- Explored recognition network representation
  - Simpler, more regular LLM representation very competitive with highly-optimized, more irregular WFST

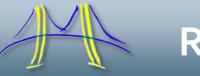


- Efficient training of acoustic models (GMMs)
- Productive parallel computing for application writers
  - Not have to go through this process every time
- Automating parallelization techniques
  - High-level code transformation
  - Just-in-time compilation
  - Code variant selection
- What is the best (parallel) platform for a particular algorithm?



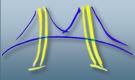
### Thank you!

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and Samsung.

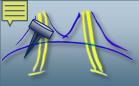


## References

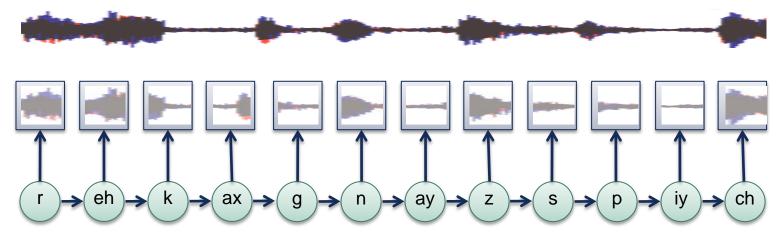
- [1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, "The landscape of parallel computing research: A view from Berkeley," EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec 2006.
- [2] A. Obukhov and A. Kharlamov, "Discrete cosine transform for 8x8 blocks with CUDA," NVIDIA white paper, October 2008.
- [3] V. Podlozhnyuk, "FFT-based 2D convolution," NVIDIA white paper, June 2007.
- [4] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, "Challenges in parallel graph processing," Parallel Processing Letters, 2007.
- [5] A. Janin, "Speech recognition on vector architectures," Ph.D. dissertation, Univer-sityof California, Berkeley, Berkeley, CA, 2004.
- [6] H. Ney and S. Ortmanns, "Dynamic programming search for continuous speech recognition," IEEE Signal Processing Magazine, vol. 16, pp. 64–83, 1999.
- [7] M. Ravishankar, "Parallel implementation of fast beam search for speaker-independent continuous speech recognition," 1993.
- [8] S. Phillips and A. Rogers, "Parallel speech recognition," Intl. Journal of Parallel Programming, vol. 27, no. 4, pp. 257–288, 1999.
- [9] K. You, Y. Lee, and W. Sung, "OpenMP-based parallel implementation of acontinousspeech recognizer on a multi-core system," in Proc. IEEE Intl. Conf.on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, Taiwan, 2009.
- [10] M. Mohri, F. Pereira, and M. Riley, "Weighted finite state transducers in speech recognition," Computer Speech and Language, vol. 16, pp. 69–88, 2002.
- [11] S. Ishikawa, K. Yamabana, R. Isotani, and A. Okumura, "Parallel LVCSR algo-rithmfor cellphone-oriented multicore processors," in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, 2006.
- [12] P. R. Dixon, T. Oonishi, and S. Furui, "Fast acoustic computations using graphics processors," in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, Taiwan, 2009.
- [13] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, "GPU accelerated acoustic likelihood computations," in Proc. Interspeech, 2008.
- [14] J. Chong, Y. Yi, N. R. S. A. Faria, and K. Keutzer, "Data-parallel large vocabulary continuous speech recognition on graphics processors," in Proc. Intl. Workshop on Emerging Applications and Manycore Architectures, 2008.
- [15] S. Kumar, C. J. Hughes, and A. Nguyen, "Carbon: Architectural support for fine- grained parallelism on chip multiprocessors," in Proc. Intl. Symposium on Computer Architecture (ISCA), 2007.
- [16] NVIDIA CUDA Programming Guide, NVIDIA Corporation, 2009, version 2.2 beta. [Online]. Available: http://www.nvidia.com/CUDA
- [17] G. T. et al, "The CALO meeting speech recognition and understanding system," in Proc. IEEE Spoken Language Technology Workshop, 2008, pp. 69–72.
- [18] A. Stolcke, X. Anguera, K. Boakye, O. Cetin, A. Janin, M. Magimai-Doss, C. Wooters, and J. Zheng, "The SRI-ICSI spring 2007 meeting and lecture recognition system," Lecture Notes in Computer Science, vol. 4625, no. 2, pp. 450–463, 2008.



## Backup Slides

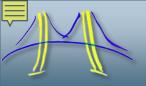


- In the Hidden Markov Model, states are *hidden*, because phones are *indirectly observed*
- One must infer the *most likely interpretation* of the signal while taking the model of the *underlying language* into account

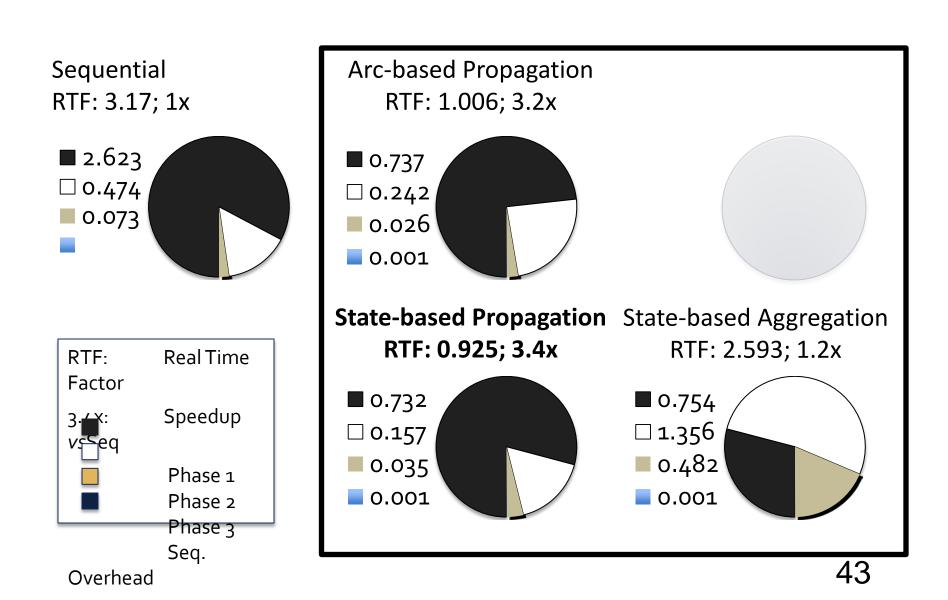


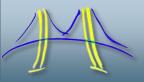
Recognize

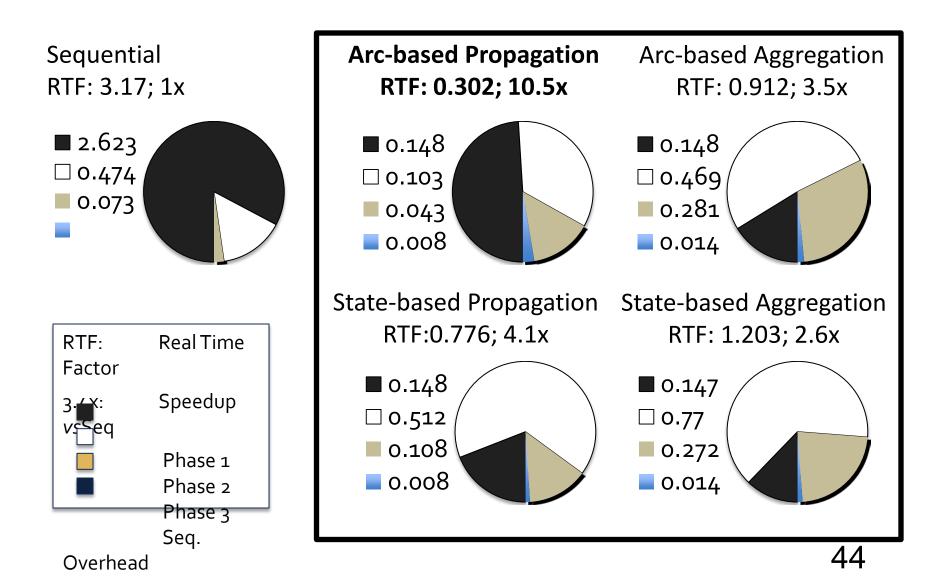
Speech



# **Detailed Speedup: Multicore**

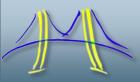








- Experiment on two more sets of models
  - Telephone conversations (optimizing for batch model processing)
  - News Broadcast (optimizing for real time processing)
- Construct the application framework for domain experts to develop speech applications
  - Search for industry use cases to substantiate usage scenarios



# LVCSR Application Framework

#### **Top Level Attributes**

Customizable attributes:

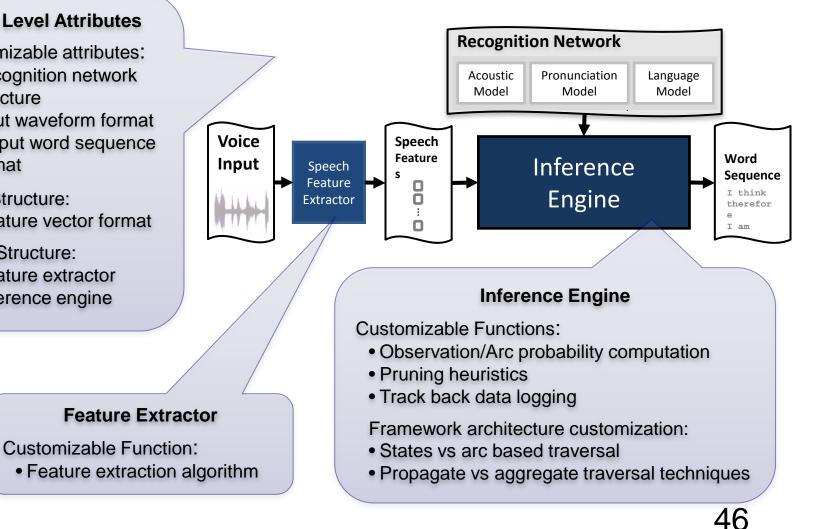
- Recognition network structure
- Input waveform format
- Output word sequence format

#### Data Structure:

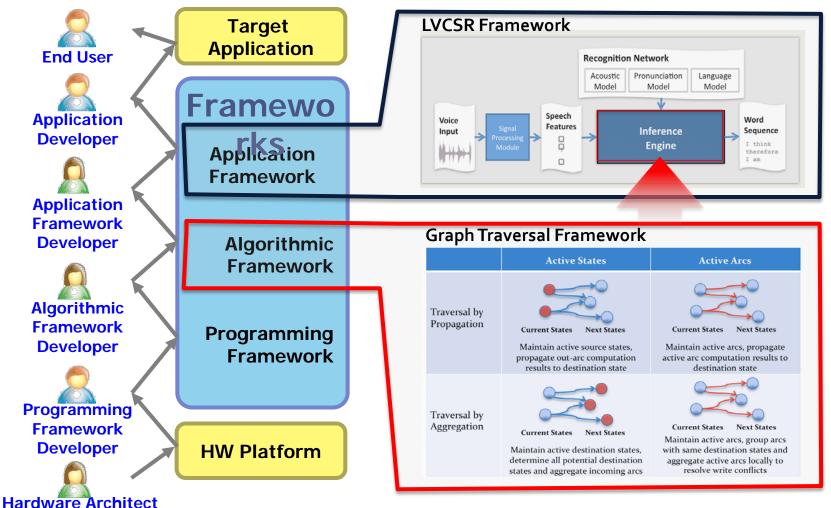
Feature vector format

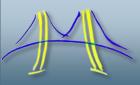
#### Fixed Structure:

- Feature extractor
- Inference engine









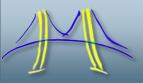
- Core level load balancing is an important issue
  - Many prior work has been limited by across core work load imbalance
- Application developers want to expose parallelism, not managing the detail
  - Best solved by implementation platform support
- Multicore:
  - Task queue abstraction with distributed queue and lazy work stealing [15]
- Core
   equestion

   Core
   equestion

- Manycore:
  - Hardware managed dynamic load balancing based on the CUDA runtime environment [16]

[15] S. Kumar, C. J. Hughes, and A. Nguyen, "Carbon: Architectural support for fine-grained parallelism on chip multiprocessors," in Proc. Intl. Symposium on Computer Architecture (ISCA), 2007.

[16] NVIDIA CUDA Programming Guide, NVIDIA Corporation, 2009, version 2.2 beta. [Online]. Available: http://www.nvidia.com/CUDA



# **Discussion: Memory Hierarchy**

## Intel Core i7

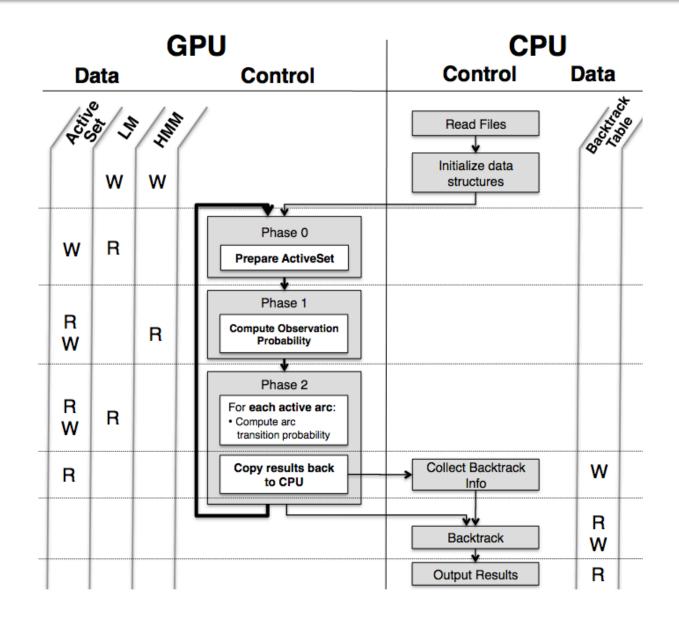
|      | Bandwidth | Size                   |
|------|-----------|------------------------|
| Lı   | *340 GB/s | 32KB Data<br>32KB Inst |
| L2   | *170 GB/s | 256KB<br>per core      |
| L3   | -         | 8MB                    |
| DRAM | 25.6 GB/s | 6GB<br>(24GB<br>max)   |

### NVIDIA GTX 280

|                  | Bandwidth  | Size                     |
|------------------|------------|--------------------------|
| Shared<br>Memory | 1244 GB/s  | 16KB Data<br>per SM unit |
| GDDR             | 141.7 GB/s | 1 GB                     |
| PCI<br>Express   | 2.5 GB/s   | Up to 24 GB              |

- Currently, the memory hierarchy differs significantly between Intel multicore and NVIDIA manycore
  - Requires different data structure for optimal performance
- Multicore:
  - Reference data in main memory, working set mostly cached in L3
- Manycore:
  - Create temporary coalesced array for working set, stored in GDDR, streaming access

# **Speech Inference Engine Implementation**



# **Recognition Network Representation**

- Linear-Lexical Model (LLM) – baseline implementation
  - Models each word as a chain of triphone states
  - Highly redundant
  - Language model from word-to-word transitions

- Weighted Finite State Transducer (WFST)
  - Combines pronunciation and language models
  - Takes advantage of sparsity of natural languages
  - Remove redundant states and arcs
  - Faster recognition speed on \*sequential\* processors

Software Must Use Hardware Parallelism

#### Hardware Trends

#### Software Trends

