
SCALABLE LARGE-VOCABULARY
CONTINUOUS SPEECH

RECOGNITION

Katya Gonina
with Jike Chong, Kisun You, Youngmin Yi, Kurt Keutzer & others

UC Berkeley ParLab

January 30, 2012

Scalability

Parallel scalability:
 The ability for an application to efficiently utilize an

increasing number of processing elements

Parallel scalability is required for software to obtain sustained performance
improvements on successive generations of processors

Intel Core i7 (45nm)
4 cores

NVIDIA GTX280 and GTX480
30 and 14 cores

Presenter
Presentation Notes
Focus on core counts

Outline

 Characteristics of Manycore Architectures

 Speech Recognition Application

 Software architecture and characteristics

 Important parallelization concerns

 Design space explored for application scalability

 Design Space Evaluation

 Recognition Network Structure Evaluation

 Conclusion

Presenter
Presentation Notes
This is a work in progress:In this talk, Hardware: left tower Application: right tower Software Transformation: Bridge span Implications to Parallel Programming

Outline

 Characteristics of Manycore Architectures

 Speech Recognition Application

 Software architecture and characteristics

 Important parallelization concerns

 Design space explored for application scalability

 Design Space Evaluation

 Recognition Network Structure Evaluation

 Conclusion

Presenter
Presentation Notes
This is a work in progress:In this talk, Hardware: left tower Application: right tower Software Transformation: Bridge span Implications to Parallel Programming

Parallel Platform Characteristics

Core

 Multicore/manycore design philosophy
 Multicore: Devote significant transistor resources

to single thread performance

 Manycore: Maximizing computation throughput at
the expense of single thread performance

 Architecture Trend:
 Increasing vector unit width (SIMD)
 Increasing numbers of cores per die

 Application Implications:
 Must increase data access regularity
 Must optimize synchronization cost

Core

Core

Core

Ca
ch

e
Ca

ch
e

Ca
ch

e

Core

Core

Core

Cache
Cache

Cache

We explore a design space for
application scalability for a speech
inference engine on multicore and

manycore platforms

Presenter
Presentation Notes
Devoting significant transistor resources for complex features for accelerating single thread performanceWhatare the Manycore Characteristics we are designing for?Increasing SIMD-width, or Wrap-sizeIncreasing number of cores or CTAsMultiple levels of parallelismSIMD level: 	share instruction decode, load/store logic	energy efficient way to increase peak throughputCore level: share memory controller, cache, I/OComplex synchronization hierarchySIMD level: private cacheCore level: cache coherency protocol synchronizationMultiple cache hierarchyManage working set to avoid unnecessary cache capacity missesVarying amount of parallelismManage differing SIMD width and core count among manycore platformsSoftware faced with two challenges: Must understand parallelism in apps Must understand implementation tradeoffs

Outline

 Characteristics of Manycore Architectures

 Speech Recognition Application

 Software architecture and characteristics

 Important parallelization concerns

 Design space explored for application scalability

 Design Space Evaluation

 Recognition Network Structure Evaluation

 Conclusion

Presenter
Presentation Notes
This is a work in progress:In this talk, Hardware: left tower Application: right tower Software Transformation: Bridge span Implications to Parallel Programming

Outline

 Characteristics of Manycore Architectures

 Speech Recognition Application

 Software architecture and characteristics

 Important parallelization concerns

 Design space explored for application scalability

 Design Space Evaluation

 Recognition Network Structure Evaluation

 Conclusion

Presenter
Presentation Notes
This is a work in progress:In this talk, Hardware: left tower Application: right tower Software Transformation: Bridge span Implications to Parallel Programming

Continuous Speech Recognition

 Challenges:
 Recognizing words from a large vocabulary arranged in exponentially many

possible permutations
 Inferring word boundaries from the context of neighboring words

 Viterbi algorithm on Hidden Markov Models (HMM) is currently the most
popular approach

phone

Presenter
Presentation Notes
Recognize a sequence of phonemes Inferring the most likely word sequence among a set of possible hypothesisDifferent than command-and-control, challenging conditionsThis work focuses on LVCSR.A speech recognition problem can be defined in terms of the set of possible word hypotheses that can beinferred from an acoustic observation signal. The simplest inference problem is an isolated word recognitiontask, such as discriminating between a “yes” or “no” in an interactive voice response system; such a task canbe solved by many techniques, generally with modest computational effort. By contrast, large vocabularycontinuous speech recognition (LVCSR) is a much more difficult problem: for example, the objective might beto provide a transcription to serve as closed captions for a television recording. LVCSR systems must be able torecognize words from a very large vocabulary arranged in exponentially many permutations, without knowingthe boundary segmentation between words.

Continuous Speech Recognition

 Inference engine system
 Used in Sphinx (CMU, USA), HTK (Cambridge, UK), and Julius (CSRC, Japan)

 Modular and flexible setup
 Shown to be effective for Arabic, English, Japanese, and Mandarin

Presenter
Presentation Notes
Extract discriminate features from waveformExamine input sequence one at a time, in the context of prior features in the sequenceInfer the most likely word sequence based on the Recognition NetworkGoal of Research: increase accuracy – feature computation/faster inference engineChris Oei on Acoustic model trainingGiven a test input, a few important factors contributing to accurate speech recognition:- How recognition network is constructed and trained How discriminating features are extracted How heavily are the most likely path prunedOne effective algorithm for LVCSR is the Hidden Markov Model (HMM) based Viterbi inference with beam search [5], which is the standard approach used in major speech recognition projects such as SPHINX, HTK, and Julius [10, 15, 9]. Figure shows the major components of such a system. A LVCSR system uses a recognition network that is compiled offline from a variety of knowledge sources using powerful statistical learning techniques. Spectral-based speech features are extracted by signal-processing the audio input and presented to an inference engine. The recognition network is loaded into memory during initialization, and the inference engine then computes the most likely word sequence based on the extracted speech features and the recognition network.Acoustic model: wave features to phonesPronunciation model: phones to wordsLanguage Model: word sequencesInference engine based LVCSR systems are modular and flexible. They are language independent and robustto various acoustic environments [15, 9]: by using different recognition networks and signal-processing kernels,they have been shown to be effective for Arabic, English, Japanese, and Mandarin, in a variety of situationssuch as phone conversations, lectures, and news broadcasts.

Recognition Network

Compiled HMM Recognition Network

aa

hh

n

HMM Acoustic
Phone Model

HOP

ON
POP

CAT

HAT

IN

THE

...

...

...

...

...

CA
T

H
A

T

...

...

H
O

P
IN

...

O

N

PO
P

...

TH
E

...

Bigram
Language Model

…

Features
from one

frame

Gaussian Mixture Model
for One Phone State

…

…

…

…

…
 …

…

Mixture
Components Computing

distance to
each mixture
components

Computing
weighted sum
of all
components

...
HOP hh aa p
...
ON aa n
...
POP p aa p
...

Pronunciation Model

Presenter
Presentation Notes
Define phone

WFST Recognition Network

Recognition Network

...
HOP hhaa p
...
ON aa n
...
POP p aa p
...

aa

hh

n

HOP

ON
POP

CAT

HAT

IN

THE

...

...

...

...

...

CA
T

H
A

T

...

...

H
O

P
IN

...

O

N

PO
P

...

TH
E

...

HMM Acoustic
Phone Model Pronunciation Model

Bigram
Language Model

…

Features
from one

frame

Gaussian Mixture Model
for One Phone State

…

…

…

…

…
 …

…

Mixture
Components

Computing
distance to
each mixture
components

Computing
weighted sum
of all
components

H level

128
Components

C level

17550
Triphones

L level

58kWord
Vocabulary

HCLG

WFST network

4 million States
10 millions Transition

Arcs

G level

168k
Bigram

Transitions

Presenter
Presentation Notes
Size of models for a typical speech recognition taskSRI meeting model

Speech Inference: Detailed Algorithm

Obs 1 Obs 2 Obs 3 Obs 4

s s s

s s s s

s s s s

s s s s

State 1

State 2

State 3

State N

x x x x

Time

…

…

…

…

…

s

An Observation A State

P(xt|st) P(st|st-1) m [t-1][st-1] m [t][st]

 Legends:

 Model size for a WFST language model

s s A Pruned State x

s

1. Forward Pass

2. Backward Pass

 # states: 4 million, # arcs: 10 million, # observations: 100/sec
 Average # active states per time step: 10,000 – 20,000

Observations

Speech

Model

States

Speech
Feature

Extractor

Inference
Engine

Voice
Input

Recognition Network

Speech
Features

Word
Sequence

…

I think
therefor
e
I am

Acoustic
Model

Pronunciation
Model

Language
Model

HMM-based
inference

Presenter
Presentation Notes
The goal of the inference engine is to……find the most likely sequence of states over time that describes the input signal.Viterbi search algorithm: Forward pass / backward passForward pass: Takes in one observation at a time over time…In each time step: First: Make an instantaneous match against states in the recognition network Second: take historic information into accountUses a dynamic programming type approach as defined by the formula, where……previous likelihood and transition probability is part of the equation, and……the result stored is the max of all incoming arcs.

ASR: Detailed Algorithm

Obs 1 Obs 2 Obs 3 Obs 4

s s s

s s s s

s s s s

s s s s

State 1

State 2

State 3

State N

x x x x

Time

…

…

…

…

…

1. Forward Pass

2. Backward Pass

Observations

Speech

Model

States

Speech
Feature

Extractor

Inference
Engine

Voice
Input

Recognition Network

Speech
Features

Word
Sequence

…

I think
therefor
e
I am

Acoustic
Model

Pronunciation
Model

Language
Model

In each
step,
consider
alternative
interpretations

Iterative through inputs
one time step at a time

In each iteration,
perform beam
search algorithm

Presenter
Presentation Notes
The goal of the inference engine is to……find the most likely sequence of states over time that describes the input signal.Viterbi search algorithm: Forward pass / backward passForward pass: Takes in one observation at a time over time…In each time step: First: Make an instantaneous match against states in the recognition network Second: take historic information into accountUses a dynamic programming type approach as defined by the formula, where……previous likelihood and transition probability is part of the equation, and……the result stored is the max of all incoming arcs.

Inference Engine Architecture

 A highly hierarchical structure
 An iterative outer loop over time steps
 A pipeline of operations in each time step
 A set of alternative hypothesis to advance

One iter per
time step:
 (~60M inst)

Multiple steps in a
phase, each has:
 1000s to 10,000s
 concurrent tasks
 (10 to 500 instr.)

Phase 1

Phase 2

Obs prob
compute

Graph traversal

Compute Intensive

Communication
Intensive

Extensive fine-grained
parallelism at the inner
most level

Sequential operation
with iteration dependencies

Recognition Process

 Phase 1:
 Observation probability

computation
 Highly compute intensive step

 Phase 2:
 Traverse out-going arcs from

active states
 Write contention must be

resolved at the destination
states

 Destination state is updated
with most-likely in-coming arc

Recognition is a process of
graph traversal

WFST Recognition Network WFST Recognition Network WFST Recognition Network

Phase 1

Phase 2

Obs prob
compute

Graph traversal

Presenter
Presentation Notes
Pruning approachesIntroduce active state, and arcs emitting from the statesUse dynamic programming techniques to backtrack the most likely path at the end of recognizing an utteranceLikely sequences can be explored in parallel

Inference Engine Challenges

 Application Challenges
 Irregularity of network
 Input-dependent, dynamically changing working set

 Scalability Goals
 Expose sufficient concurrency
 1) Efficiently synchronize between an increasing number of concurrent tasks
 2) Effectively utilize all levels of parallel resources, including SIMD parallelism

Core

Core

Core

Core

$
$

$

Core

Core

Core

$
$

$

Synchronization

SIMD Efficiency

WFST Recognition Network

Presenter
Presentation Notes
Efficient synchronization reduces management overhead, allows the same problem to gain additional speedup as we scale to additional cores.Effective SIMD utilization at a certain SIMD width indicates that the algorithm is likely to benefit greatly from even wider SIMD units.

Outline

 Characteristics of Manycore Architectures

 Speech Recognition Application

 Software architecture and characteristics

 Important parallelization concerns

 Design space explored for application scalability

 Design Space Evaluation

 Recognition Network Structure Evaluation

 Conclusion

Presenter
Presentation Notes
This is a work in progress:In this talk, Hardware: left tower Application: right tower Software Transformation: Bridge span Implications to Parallel Programming

Core Level Synchronization

 Challenge:
 The cost for write conflict resolution can dominate runtime

 Experiment:
 Allow traversal to either propagate from source or aggregate

at destination for write conflict resolution

Presenter
Presentation Notes
Using atomic operations, or lockingPrivatization

Synchronization Cost

 The fixed cost (overhead) of
aggregation technique is
significant

 Relative gradient of propagation
and aggregation techniques
depend on the efficiency of the
platform in resolving write conflicts

 If no hardware atomics are
available, using spin locks and
semaphores will be costly

 If data structure requires multiple
writes to the same destination
states, significant contention can
occur

of states/arcs handled

To
ta

l T
im

e
fo

r S
yn

ch
ro

ni
za

tio
n

 Propagation with atomic
memory ops causing contention
 leading to access serialization

SIMD Utilization Efficiency

 Challenge:
 Vector unit efficiency can quickly drop off with increased vector width

 Experiment:
 Traverse the recognition network based on active states or active

arcs

Presenter
Presentation Notes
Fine-grained parallelism good for scalabilityDistributingwork load over SIMD lanesOut degree varies widely:1 – 897 outgoing arcs

Design Space

Traversal by Propagation Traversal by Aggregation

Active States

Maintain active source states,
propagate out-arc computation

results to destination state

Maintain active destination states,
determine all potential destination
states and aggregate incoming arcs

Active Arcs

Maintain active arcs, propagate active
arc computation results to destination

state

Maintain active arcs, group arcs with
same destination states and

aggregate active arcs locally to resolve
write conflicts

Current States Next States Current States Next States

Current States Next States Current States Next States

Presenter
Presentation Notes
Active Arcs – Aggregation: Use global atomics to manage a queue pointer scan over potential next states to re

Hardware Platform

Specifications Core i7920

GTX280

Processing Elements
4 cores (SMT), 4

way SIMD
@2.66 GHz

30 cores, 8 way
physical, 32 way

logical SIMD
@1.3 GHz

SP GFLOP/s 85.1 933

Memory Bandwidth 25.6 GB/s 141 GB/s

Register File - 1.875 MB

Local Store - 480 kB

Outline

 Characteristics of Manycore Architectures

 Speech Recognition Application

 Software architecture and characteristics

 Important parallelization concerns

 Design space explored for application scalability

 Design Space Evaluation

 Recognition Network Structure Evaluation

 Conclusion

Presenter
Presentation Notes
This is a work in progress:In this talk, Hardware: left tower Application: right tower Software Transformation: Bridge span Implications to Parallel Programming

Efficiency vs Platform

Recognition Accuracy

 Avg. # of Active States 32820 20000 10139 3518

 Word Error Rate 41.6 41.8 42.2 44.5

RTF

 Sequential 4.36 3.17 2.29 1.2

 Multicore 1.23 0.93 0.70 0.39

 Manycore 0.40 0.30 0.23 0.18

Presenter
Presentation Notes
As shown in Table, the multicore and manycoreimplementation can achieve significant speedup for the same numberof active states. More importantly, for the same real time factor(RTF), parallel implementations provide a higher recognitionaccuracy. For a RTF of 1.2, accuracy improves from 44.5\% to41.6\% WER going from a sequential to a multicore implementation.For a RTF of 0.4, accuracy improves from 44.5\% to 41.6\% WERgoing from a multicore implementation to manycore implementation.

Overall Speedup

 Speed up varies between phases
 4-20x for compute intensive phases
 3-4x for communication intensive phases
 Communication intensive phases becoming proportionally more

important

0.0 1.0 2.0 3.0 4.0

Squential

Multicore

Manycore

82.7% Compute Intensive
17.3% Communication Intensive

79.1% Compute Intensive
20.9% Communication Intensive

49.0% Compute Intensive
51.0% Communication Intensive

Decoding
Time per

Second of
Speech

3.4x

10.5x

Synchronization Cost

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100

To
ta

l S
yn

ch
ro

ni
za

ti
on

 C
os

t [
se

c]

Number of Arcs Synchronized [Millions of Arcs]

Synchronization Cost in
Inference Engine Graph Traversal

 Propagate
 with Global
Contention

Based on
Manycore
analysis

SIMD Utilization Efficiency

State Based Arc Based

Time taken 756.79 ms 81.74 ms

Speedup 1x 9.25x

Outline

 Characteristics of Manycore Architectures

 Speech Recognition Application

 Software architecture and characteristics

 Important parallelization concerns

 Design space explored for application scalability

 Design Space Evaluation

 Recognition Network Structure Evaluation

 Conclusion

Recognition Network Representation

 Significant effort put into optimizing recognition
networks
 Starting at baseline Linear Lexical Models
 One chain of states per word

 Tree-lexical
 Finite state machine techniques to construct WFST

What implications does the structure have on
efficiency of parallel speech inference algorithms?

Linear-Lexical Model vs WFST

Inference Implementation Using LLM Network

 Explicitly handles two types of transitions
 Within-word
 Across-word

 Optimized data layout for each type
 First states for each word stored consecutive for across-

word transitions
 Chains of within-word states stored as a chain

 Across-word transitions – all-to-all dense
computation
 Extremely efficient on the GPU

Results

 Wall Street Journal 5K Corpus

4
6
8

10
12
14
16
18
20
22
24

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

W
ER

 (%
)

Transitions (Alternative Interpretations) Evaluated

LLM vs WFST: Speed & Error Rate

22x

Results

Presenter
Presentation Notes
Going to 480 - 25% improvement for LLM, 79% improvement for WFST (due to caching)

Execution Time

Data Gathering Observation Prob Graph Traversal Sequential Overhead

Outline

 Characteristics of Manycore Architectures

 Speech Recognition Application

 Software architecture and characteristics

 Important parallelization concerns

 Design space explored for application scalability

 Design Space Evaluation

 Recognition Network Structure Evaluation

 Conclusion

Conclusions

 Scalable software architecture for speech
recognition inference engine
 2.5% sequential overhead

 Explored algorithmic design space
 Fastest algorithm depends on platform
 Core synchronization and SIMD optimization are

important for scalability
 Explored recognition network representation
 Simpler, more regular LLM representation very

competitive with highly-optimized, more irregular
WFST

Current and Future Work

 Efficient training of acoustic models (GMMs)
 Productive parallel computing for application writers
 Not have to go through this process every time

 Automating parallelization techniques
 High-level code transformation
 Just-in-time compilation
 Code variant selection

 What is the best (parallel) platform for a particular
algorithm?

Thank you!

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding
and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support

comes from Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and
Samsung.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K.
A. Yelick, “The landscape of parallel computing research: A view from Berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006.

[2] A. Obukhov and A. Kharlamov, “Discrete cosine transform for 8x8 blocks with CUDA,” NVIDIA white paper, October 2008.
[3] V. Podlozhnyuk, “FFT-based 2D convolution,” NVIDIA white paper, June 2007.
[4] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in parallel graph processing,” Parallel Processing Letters, 2007.
[5] A. Janin, “Speech recognition on vector architectures,” Ph.D. dissertation, Univer-sityof California, Berkeley, Berkeley, CA, 2004.
[6] H. Ney and S. Ortmanns, “Dynamic programming search for continuous speech recognition,” IEEE Signal Processing Magazine, vol. 16,

pp. 64–83, 1999.
[7] M. Ravishankar, “Parallel implementation of fast beam search for speaker-independent continuous speech recognition,” 1993.
[8] S. Phillips and A. Rogers, “Parallel speech recognition,” Intl. Journal of Parallel Programming, vol. 27, no. 4, pp. 257–288, 1999.
[9] K. You, Y. Lee, and W. Sung, “OpenMP-based parallel implementation of acontinousspeech recognizer on a multi-core system,” in Proc.

IEEE Intl. Conf.on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, Taiwan, 2009.
[10] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state transducers in speech recognition,” Computer Speech and Language, vol. 16,

pp. 69–88, 2002.
[11] S. Ishikawa, K. Yamabana, R. Isotani, and A. Okumura, “Parallel LVCSR algo-rithmfor cellphone-oriented multicore processors,” in Proc.

IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, 2006.
[12] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic computations using graphics processors,” in Proc. IEEE Intl. Conf. on Acoustics,

Speech, and Signal Processing (ICASSP), Taipei, Taiwan, 2009.
[13] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, “GPU accelerated acoustic likelihood computations,” in Proc. Interspeech,

2008.
[14] J. Chong, Y. Yi, N. R. S. A. Faria, and K. Keutzer, “Data-parallel large vocabulary continuous speech recognition on graphics processors,”

in Proc. Intl. Workshop on Emerging Applications and Manycore Architectures, 2008.
[15] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support for fine- grained parallelism on chip multiprocessors,” in Proc.

Intl. Symposium on Computer Architecture (ISCA), 2007.
[16] NVIDIA CUDA Programming Guide, NVIDIA Corporation, 2009, version 2.2 beta. [Online]. Available: http://www.nvidia.com/CUDA
[17] G. T. et al, “The CALO meeting speech recognition and understanding system,” in Proc. IEEE Spoken Language Technology Workshop,

2008, pp. 69–72.
[18] A. Stolcke, X. Anguera, K. Boakye, O. Cetin, A. Janin, M. Magimai-Doss, C. Wooters, and J. Zheng, “The SRI-ICSI spring 2007 meeting

and lecture recognition system,” Lecture Notes in Computer Science, vol. 4625, no. 2, pp. 450–463, 2008.

Backup Slides

Hidden Markov Model

 In the Hidden Markov Model, states are hidden,
because phones are indirectly observed

 One must infer the most likely interpretation of the
signal while taking the model of the underlying
language into account

r eh k ax g n ay z s p iy ch

Recognize Speech

Presenter
Presentation Notes
Temporal Pattern Recognition: Visual language recognition, human action recognition, gene sequencing applications…

Detailed Speedup: Multicore

43

State-based Aggregation
RTF: 2.593; 1.2x

Arc-based Propagation
RTF: 1.006; 3.2x

State-based Propagation
RTF: 0.925; 3.4x

0.737
0.242
0.026
0.001

0.732
0.157
0.035
0.001

0.754
1.356
0.482
0.001

RTF: Real Time
Factor

3.4x: Speedup
vsSeq

 Phase 1
 Phase 2
 Phase 3
 Seq.
Overhead

2.623
0.474
0.073

Sequential
RTF: 3.17; 1x

Presenter
Presentation Notes
Ratio are similar

Detailed Speedup: Manycore

44

Arc-based Aggregation
RTF: 0.912; 3.5x

State-based Aggregation
RTF: 1.203; 2.6x

Arc-based Propagation
RTF: 0.302; 10.5x

State-based Propagation
RTF:0.776; 4.1x

0.148
0.103
0.043
0.008

0.148
0.512
0.108
0.008

0.148
0.469
0.281
0.014

0.147
0.77
0.272
0.014

2.623
0.474
0.073

Sequential
RTF: 3.17; 1x

RTF: Real Time
Factor

3.4x: Speedup
vsSeq

 Phase 1
 Phase 2
 Phase 3
 Seq.
Overhead

Next Steps

 Experiment on two more sets of models
 Telephone conversations (optimizing for batch model

processing)
 News Broadcast (optimizing for real time processing)

 Construct the application framework for domain

experts to develop speech applications
 Search for industry use cases to substantiate usage

scenarios

45

LVCSR Application Framework

46

Top Level Attributes

Customizable attributes:
• Recognition network

structure
• Input waveform format
• Output word sequence

format

Data Structure:
• Feature vector format

Fixed Structure:
• Feature extractor
• Inference engine

Speech
Feature

Extractor

Inference
Engine

Voice
Input

Recognition Network

Speech
Feature
s

Word
Sequence

 …

I think
therefor
e
I am

Acoustic
Model

Pronunciation
Model

Language
Model

Inference Engine

Customizable Functions:
• Observation/Arc probability computation
• Pruning heuristics
• Track back data logging

Framework architecture customization:
• States vs arc based traversal
• Propagate vs aggregate traversal techniques

Feature Extractor

Customizable Function:
• Feature extraction algorithm

Frameworks for Parallel
Programming

47

HW Platform

Target
Application

Application
Framework

Algorithmic
Framework

Programming
Framework

Framewo
rks

End User

Hardware Architect

Application
Developer

Application
Framework
Developer

Algorithmic
Framework
Developer

Programming
Framework
Developer

LVCSR Framework

Graph Traversal Framework

Presenter
Presentation Notes
Define a hierarchy of frameworks to provide framework developers with a productive programming environmentApplication developers will be the vast majority of the programmers developing for the manycore platformsApplication Frameworks provide implementation support for application developer with a structure common to the application domain, and modules that can be customized for specific applicationsDevelop application frameworks that are essential to close the implementation gapProvides a solution for domain experts to program manycoreProvides an interface for framework developers to targetWhat to express it?How to express it?

Discussion: Load Balancing

 Core level load balancing is an important issue
 Many prior work has been limited by across core work load imbalance

 Application developers want to expose parallelism, not managing the
detail
 Best solved by implementation platform support

 Multicore:

 Task queue abstraction with distributed queue
and lazy work stealing [15]

 Manycore:
 Hardware managed dynamic load balancing

based on the CUDA runtime environment [16]

Core

Core

Core

Ca
ch

e
Ca

ch
e

Ca
ch

e

Core

Core

Core

Cache
Cache

Cache

[15] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support for fine-grained parallelism on chip multiprocessors,” in Proc. Intl. Symposium on Computer
Architecture (ISCA), 2007.

[16] NVIDIA CUDA Programming Guide, NVIDIA Corporation, 2009, version 2.2 beta. [Online]. Available: http://www.nvidia.com/CUDA

Discussion: Memory Hierarchy

 Currently, the memory hierarchy differs significantly between Intel multicore and
NVIDIA manycore
 Requires different data structure for optimal performance

 Multicore:
 Reference data in main memory, working set mostly cached in L3

 Manycore:
 Create temporary coalesced array for working set, stored in GDDR, streaming access

Bandwidth Size

Shared
Memory

1244 GB/s
16KB Data
per SM unit

GDDR 141.7 GB/s 1 GB

PCI
Express

2.5 GB/s Up to 24 GB

Bandwidth Size

L1 *340 GB/s
32KB Data
32KB Inst

L2 *170 GB/s 256KB
per core

L3 - 8MB

DRAM 25.6 GB/s
6GB

(24GB
max)

NVIDIA GTX 280
Intel Core i7

Speech Inference Engine Implementation

Recognition Network Representation

 Linear-Lexical Model
(LLM) – baseline
implementation
 Models each word as a

chain of triphone states
 Highly redundant
 Language model from

word-to-word
transitions

 Weighted Finite State
Transducer (WFST)
 Combines pronunciation

and language models
 Takes advantage of

sparsity of natural
languages

 Remove redundant
states and arcs

 Faster recognition speed
on *sequential*
processors

Software Must Use Hardware Parallelism

Hardware Trends Software Trends

Presenter
Presentation Notes
Here is an illustration of the hardware technology landscape. If we look at the Intel CPU Trends over the past 40 years, we see that: # of transistors is growing exponentially Clock speed, power consumption, performance/clock has plateauedTo continue to improve compute capability while respecting the limitations of physics and economics, Hardware vendors are choosing to go parallel The current scaling trend is to provide multiple cores per chip and multiple SIMD lanes per core.On the software side, as manycore processors is going into servers, laptops and handheld devices,…we see an increase in the variety of applications that can benefit from them.…some examples of applications include, speech recognition, image contour detection, market risk analytics, medical imagingConclusion, it is very important for the software applications to be able to exploit the parallelism in the hardware,…otherwise the end-user will not be able to experience the benefit of the new generation of hardware.

	Scalable Large-Vocabulary Continuous Speech Recognition
	Scalability
	Outline
	Outline
	Parallel Platform Characteristics
	Outline
	Outline
	Continuous Speech Recognition
	Continuous Speech Recognition
	Recognition Network
	Recognition Network
	Speech Inference: Detailed Algorithm
	ASR: Detailed Algorithm
	Inference Engine Architecture
	Recognition Process
	Inference Engine Challenges
	Outline
	Core Level Synchronization
	Synchronization Cost
	SIMD Utilization Efficiency
	Design Space
	Hardware Platform
	Outline
	Efficiency vs Platform
	Recognition Accuracy
	Overall Speedup
	Synchronization Cost
	SIMD Utilization Efficiency
	Outline
	Recognition Network Representation
	Linear-Lexical Model vs WFST
	Inference Implementation Using LLM Network
	Results
	Results
	Execution Time
	Outline
	Conclusions
	Current and Future Work
	Slide Number 39
	References
	Slide Number 41
	Hidden Markov Model
	Detailed Speedup: Multicore
	Detailed Speedup: Manycore
	Next Steps
	LVCSR Application Framework
	Frameworks for Parallel Programming
	Discussion: Load Balancing
	Discussion: Memory Hierarchy
	Speech Inference Engine Implementation
	Recognition Network Representation
	�Software Must Use Hardware Parallelism

