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Communication-Avoiding (CA) work in Parlab

Faculty: James Demmel, Armando Fox and Kathy Yelick

President Obama cited communication avoiding algorithms in the FY
2012 Department of Energy Budget Request to Congress (regarding
CA-GMRES work from Mark Hoemmen)
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Ongoing Projects (with involved students)

Heterogeneous CA algorithms: Grey Ballard and Andrew Gearhart

CA Successive Band Reduction: Grey Ballard and Nick Knight

Hypergraph Partitioning: Erin Carson and Nick Knight

CA Krylov Subspace Methods: Erin Carson and Nick Knight

CA Solvers for Band Matrices: Razvan Carbunescu

Lower bounds for Strassen: Grey Ballard, Olga Holtz and Oded Schwartz

Best Paper Prize in SPAA’11

CA Gang-scheduling for multicore: Juan Colmenares

Talk 2:00pm tomorrow!!

SEJITS Specializers: Shoaib Kamil

Talk 9:00am tomorrow!!

2.5D Algorithms: Edgar Solomonik

Distingished Paper Prize in EuroPar’11
Talk 9:00am on Friday!!

Topology-aware Collectives: Edgar Solomonik

CA QR Algorithms: Michael Anderson
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Talk Summary

Communication-avoiding algorithms move as little data as possible,
since these are the slowest and energy-hungriest operations any
computer performs

Model for Heterogeneous Processing is presented and justified

We extend previous work on communication lower bounds to our
heterogeneous model

Communication-optimal heterogeneous algorithms for
matrix-matrix and matrix-vector multiplication are presented
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Previous Models of Computation

Machine models assume “fast” and
“slow” types of memory access

We wish to asymptotically minimize
“slow” traffic

Sequential: Single processor is separated
from memory via a small, fast cache
(“fast”= cache,“slow”= DRAM)

Distributed: A group of processors is
connected on a network (“fast”=local
access, “slow” = remote access)

Sequential Model

SLOW 

FAST 

Distributed Model

LOCAL LOCAL LOCAL 

LOCAL LOCAL LOCAL 

LOCAL LOCAL LOCAL 
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Previous Models of Computation

Distributed model assumes homogeneous processors and network links

Our heterogeneous model assumes a global shared memory with
processing elements defined by a set of empirical parameters

Goal of the model is to capture the design space of likely best
algorithms...while leaving specific parameter selection to autotuners

Andrew Gearhart Parlab Retreat June 2011 6



Heterogeneous Model: Considerations

For this work, we assume each
processor to have an independent
link to a shared global memory
and that processing rate is
constant.

Heterogeneous Model

GLOBAL 

LOCAL1 

LOCAL2 

LOCAL3 

LOCAL4 

A heterogeneous processing
element i is defined by:

Mi : fast memory size
(words)
γi : processing rate
(sec/flop)
αi : link latency between fast
and slow memory (sec/msg)
βi : link inverse bandwidth
(sec/word)

Processing elements can be
CPU cores, GPUs, FPGAs,
etc.
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But wait, Andrew. Are these assumptions accurate???

Uh...maybe. Bandwidth and latency benchmarking show a more
complex story...
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Heterogeneous Model: Considerations

FSB-based machine:
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Heterogeneous Model: Considerations

NUMA machine:
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Heterogeneous Model: Considerations
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Heterogeneous Lower Bounds : Execution Model

Message transfer times are modeled as Tmsg = α + βW

We lower bound the parallel program’s total runtime T by considering
the last processor to finish execution:

T ({Fi}) ≥ max
1≤i≤P

{γiFi + βiWi + αiLi}

where for processor i :

Fi number of flops

Wi words transferred

Li messages sent

γi processing rate

βi inverse bandwidth

αi message latency
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Heterogeneous Lower Bounds : General Bound

Previous bounds for serial model (Ballard et al. 2009):

Wi ≥ max

{
Ii + Oi ,

Fi

8
√
M i

}
, Li ≥ max

{
Ii + Oi

Mi
,

Fi

8M
3/2
i

, sgn(Fi )

}

where Ii and Oi are the number of input and output words for
processor i , respectively

If we assume that the serial lower bounds apply for all processors, we
obtain a general lower bound for program runtime:

Theorem (General Heterogeneous Lower Bound)
For P processors and G total flops to execute, then

T ≥ min∑
Fi =G

max
1≤i≤P

{
γi Fi + βi max

{
Ii + Oi ,

Fi

8
√

M i

}
+ αi max

{
Ii + Oi

Mi
,

Fi

8M
3/2
i

, sgn(Fi )

}}
.
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Heterogeneous Lower Bounds : matrix-vector operations

In the case of matrix-vector operations I + O = O(n2) = G , so

T ≥ min∑
Fi =G

{
max

1≤i≤P

{
γiFi + βi (cFi ) + αi

(
cFi

Mi

)}}
with c constant

We can solve an associated linear program (realizing that all
processors must finish at the same time in the minimal partition) to
obtain the optimal partition of flops:

Fi =

1
ξi∑
j

1
ξj

G

where ξi = γi + cβi + cαi
Mi
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Heterogeneous Lower Bounds : matrix-matrix operations

If we assume that Fi

8
√

Mi
> Ii + Oi (as in the case of matrix-matrix

operations) we obtain an optimal partition in a similar manner:

Fi =
1
δi∑
j

1
δj

G

where δi = γi + c βi

8
√

Mi
+ cαi

8M
3/2
i
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Heterogeneous Algorithms : Challenges and Considerations

If we attempt to use the model for work
partitioning, we must accurately measure
performance parameters...

How to best measure: bandwidth,
latency, etc.?

If the input data lies in global memory,
how can we achieve latency goals?

Proper data layout should be considered
to properly minimize the number of
messages (latency)

Quadtree
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Heterogeneous Algorithms : Matrix-vector multiplication

Algorithm Outline
1 Determine parameters
αi , βj , γi ,Mi and use to
calculate each Fi/G

2 Split the input matrix (stored
row-major) according to the
values of Fi/G

3 Each processor uses a fast
matrix-vector multiplication
routine to calculate its
assigned work

4 Merge results into output
vector in global memory

Heterogeneous matrix-vector multiplication

= 

A x y 
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Heterogeneous Algorithms : Matrix-matrix multiplication

We can use recursive matrix multiplication to divide the work into 8
subproblems at each level of recursion
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Heterogeneous Algorithms : Matrix-matrix multiplication

We can use recursive matrix multiplication to divide the work into 8
subproblems at each level of recursion

Algorithm Overview
1 Input matrices should be stored block-recusively to ensure contiguous

subproblems
2 Determine parameters αi , βj , γi ,Mi and use to calculate each Fi/G
3 Convert Fi/G to an octal fraction, and assign subproblems according

to the octal digits
4 Each processor computes work via a matrix multiplication routine

tuned for Mi -sized problems
5 Final output matrix is generated in global memory
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Heterogeneous Algorithms : Matrix-matrix multiplication
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Heterogeneous Algorithms : Matrix-matrix multiplication
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Heterogeneous Algorithms : Matrix-matrix multiplication
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Heterogeneous Algorithms : Matrix-matrix multiplication
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Open Questions

Do we really have to implement a block-recursive data structure to
achieve the latency bound, or can we get away with row-major?

When can we simply ignore a processor? (i.e. cheaper to do small
problems only on CPU, as opposed to CPU/GPU split)

How big do problems have to be before we start to see benefit from a
CA approach?

What emerging architectures should be targeted for quantitative
evaluation?
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Future Work

Implementation and evaluation of matrix-vector and matrix-matrix
multiplication algorithms

Extension of bounds to Strassen-like algorithms

Algorithms for more complicated algorithms: LU and QR

Must consider flops/byte mapping and the critical path of the algorithm

Can a dynamic scheduling/work stealing approach provide more
flexibility? (handling heterogeneity in time as well as space)

What would an energy-optimal algorithm look like on a heterogeneous
machine? How does this relate to the CA paradigm?
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