Cloud Computing using
MapReduce, Hadoop, Spark

Benjamin Hindman
benh@cs.berkeley.edu

lab

Why this talk?

* At some point, you’ll have enough data to run
your “parallel” algorithms on multiple
computers

* SPMD (e.g., MPI, UPC) might not be the best
for your application, or your environment

What 1s Cloud Computing?

scalable
self-service

virtualized

utility

managed elastic

economic

pay-as-you-go

What 1s Cloud Computing?

“Cloud” refers to large Internet services running on 10,000s of
machines (Amazon, Google, Microsoft, etc)

“Cloud computing” refers to services by these companies that let
external customers rent cycles and storage

— Amazon EC2: virtual machines at 8.5¢/hour, billed hourly

— Amazon S3: storage at 15¢/GB/month

— Google AppEngine: free up to a certain quota

— Windows Azure: higher-level than EC2, applications use API

What 1s Cloud Computing?

e Virtualization

— From co-location, to hosting providers running the
web server, the database etc and having you just FTP
your files ... now you do all that yourself again!

* Self-service (use personal credit card) and pay-as-you-go

 Economic incentives
— Provider: Sell unused resources

— Customer: no upfront capital costs building data
centers, buying servers, etc

“Cloud Computing”

e Infinite scale ...

Benjamin Hindman <benh @EECS, Berkeley.EOU >

Sent: Wed May 05 12:31:24 2010
Subject: Re: Question on recent AWS usage

Hi I

Hope things are well with you. I'm not sure if anybody from the RAD Lab has been in touch with you about this, but a big paper deadline is
coming up and several projects in the RAD Lab are using EC2 extensively for research experiments and we are hitting our limit. The

deadline is Friday and I'm wondering if we can get the limit increased temporarily until Friday. | think our limit may currently be 500
instances, could we getitincreased to a 1000 or 20007

I
CS Graduate Student
UC Berkeley

“Cloud Computing”

* Always available ...

hwitter’ Search Q Home Profile Messages Who To Follow

% @4sqgSupport
) roursquare support

We're down due to the current Amazon
#EC2 outage. Please bear with us!

via CoTweet Favorite Retweet € Reply

Retweeted by cjschris and 39 others

el I N RLE IR g A b © [

About Help Blog Status Jobs Terms Privacy Advertisers Businesses Media Developers Resources © 2011 Twitter

Amazon RDS (N. Virgnia) < V) V] 0, A (=)

Moving Target

Infrastructure as a Service (virtual machines)

=» Platforms/Software as a Service

Why?
* Managing lots of machines i1s still hard

* Programming with failures 1s still hard

Solution: higher-level frameworks, abstractions

Challenges in the Cloud Environment

* Cheap nodes fail, especially when you have many
— Mean time between failures for 1 node = 3 years

— MTBEF for 1000 nodes = 1 day

— Solution: Restrict programming model so you can
efficiently “build-in” fault-tolerance (art)

* Commodity network = low bandwidth
— Solution: Push computation to the data

MPI 1n the Cloud

* EC2 provides virtual machines, so you can run MPI

e Fault-tolerance:

— Not standard 1n most MPI distributions (to the best of
my knowledge)

— Recent restart/checkpointing techniques®, but need the
checkpoints to be replicated as well

e Communication?

* https://ftg.Ibl.gov/projects/CheckpointRestart

Latency on EC2 vs Infiniband

«EC2 mNCSA
250
o
4 © *
”‘ $ TS », 4 *%
L o "5\010 ""M!"‘
200 . . * P P -
‘o w e w0g~’
m s e
o MR IR SR . ¢
@ 150 e * e e %o ¢ ¥ L7 PN S
= ,”,‘0. cet e L4y 4, o .
o - ¢ Pef 4+ “
c
9 100
©
-
50

OF-mm-. s "

0 200 400 600 800 1000 1200
Message size (bytes)

Source: Edward Walker. Benchmarking Amazon EC2 for High Performance Computing. ;login:, vol. 33, no. 5, 2008.

MPI 1n the Cloud

* Cloud data centers often use 1 Gbps Ethernet, which 1s
much slower than supercomputer networks

* Studies show poor performance for communication
intensive codes, but OK for less intensive ones

* New HPC specific EC2 “sizes” that may help: 10 Gbps
Ethernet, and optionally 2 < Nvidia Tesla GPUs

What 1s MapReduce?

* Data-parallel programming model for clusters
of commodity machines

* Pioneered by Google
— Processes 20 PB of data per day

* Popularized by Apache Hadoop project
— Used by Yahoo!, Facebook, Amazon, ...

What has MapReduce been used for?

* At Google:
— Index building for Google Search
— Article clustering for Google News
— Statistical machine translation

* At Yahoo!:
— Index building for Yahoo! Search
— Spam detection for Yahoo! Mail

* At Facebook:
— Ad optimization
— Spam detection

What has MapReduce been used for?

* In research:
— Analyzing Wikipedia conflicts (PARC)
— Natural language processing (CMU)
— Bioinformatics (Maryland)
— Particle physics (Nebraska)
— Ocean climate simulation (Washington)
— <Your application here>

Outline

MapReduce
MapReduce Examples
Introduction to Hadoop
Beyond MapReduce

Summary

MapReduce Goals

* Cloud Environment:
— Commodity nodes (cheap, but unreliable)
— Commodity network (low bandwidth)
— Automatic fault-tolerance (fewer admins)

* Scalability to large data volumes:

— Scan 100 TB on 1 node @ 50 MB/s = 24 days
— Scan on 1000-node cluster = 35 minutes

MapReduce Programming Model

list<T. > =>» List<T >
* Data type: key-value records

list<(K,,, Vi,)> =2 list<(K_,, Vo)™

1n?

MapReduce Programming Model

Map function:

(K., V.) =2 list<(K,

1n? nter? 1nter)

Reduce function:
(K. .., 1st<V.

nter?

>) = list<(K ., V,,)>

inter

Example: Word Count

def map(line num, line):
foreach word in line.split():
output(word, 1)

def reduce(key, values):
output(key, sum(values))

Example: Word Count

def map(line num, line):
foreach word in line.split():
output(word, 1)

def reduce(key, values):
output(key, values.size())

Input

the quick
brown fox

the fox ate
the mouse

how now
brown
COW

Map

Shuffle & Sort

the, 1
brown, 1
fox, 1

ate, 1
mouse, 1

Example: Word Count

Reduce

Output

brown, 2
fox, 2
how, 1

now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

Optimization: Combiner

Local reduce function for repeated keys
produced by same map

For associative ops. like sum, count, max

Decreases amount of intermediate data

Example:

def combine(key, values):
output(key, sum(values))

Example: Word Count + Combiner

Input

the quick
brown fox

the fox ate
the mouse

how now
brown
COW

Map

how, 1
now, 1

brown, 1

Shuffle & Sort

the, 1
brown, 1
fox, 1

ate, 1
mouse, 1

Reduce

Output

brown, 2
fox, 2
how, 1

now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

MapReduce Execution Details

Data stored on compute nodes

Mappers preferentially scheduled on same node or same
rack as their input block

— Minimize network use to improve performance

Mappers save outputs to local disk before serving to
reducers

— Efficient recovery when a reducer crashes
— Allows more flexible mapping to reducers

MapReduce Execution Details

Fault Tolerance in MapReduce

1. If a task crashes:

— Retry on another node

* OK for a map because 1t had no dependencies
* OK for reduce because map outputs are on disk

— If the same task repeatedly fails, fail the job or
ignore that input block

» Note: For the fault tolerance to work, user
tasks must be idempotent and side-effect-free

Fault Tolerance in MapReduce

2. If a node crashes:
— Relaunch its current tasks on other nodes

— Relaunch any maps the node previously ran

* Necessary because their output files were lost along
with the crashed node

Fault Tolerance in MapReduce

3. If a task 1s going slowly (straggler):

— [Launc|
— Take t]

h second copy of task on another node

he output of whichever copy finishes first,

and ki

1 the other one

* Critical for performance 1n large clusters (many
possible causes of stragglers)

Takeaways

* By providing a restricted programming model,
MapReduce can control job execution 1n useful
ways:

— Parallelization 1nto tasks

— Placement of computation near data
— Load balancing

— Recovery from failures & stragglers

Outline

MapReduce
MapReduce Examples
Introduction to Hadoop
Beyond MapReduce

Summary

1. Sort

Input: (key, value) records
Output: same records, sorted by key

ant, bee

. . . A-M
Map: 1dentity function o AV
z aardvark
ant
bee
cCOwW

elephant

Reduce: 1dentify function

CoOwW

pig

Trick: Pick partitioning - [N-Z]
pig

function p such that elephant sheep
ky < ky, => p(k,) < p(k,) -

2. Search

Input: (filename, line) records
Output: lines matching a given pattern

Map:
if (line matches pattern):
output(filename, line)

Reduce: 1dentity function

— Alternative: no reducer (map-only job)

3. Inverted Index

Input: (filename, text) records
Output: list of files containing each word

Map:
foreach word in text.split():
output(word, filename)

Combine: remove duplicates

Reduce:

def reduce(word, filenames):
output(word, sort(filenames))

Inverted Index Example

hamlet.txt to, hamlet.txt

tobe or __, be, hamlet.txt
not to be or, hamlet.txt \ afraid, (12th.txt)
not, hamlet.txt be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)

be, 12th of, (12th.txt)
T or, (hamlet.txt)

not, 12th.txt / to, (hamlet.txt)

benot ' — 4faid, 12th.txt
afraid of of, 12th.txt
greatness greatness, 12th.txt

12th.txt

4. Most Popular Words

Input: (filename, text) records
Output: the 100 words occurring in most files

Two-stage solution:
— Job 1:

* Create inverted index, giving (word, list(file)) records

— Job 2:

* Map each (word, list(file)) to (count, word)
* Sort these records by count as in sort job

Optimizations:
— Map to (word, 1) instead of (word, file) in Job 1
— Estimate count distribution by sampling in Job 1.5

5. Numerical Integration

Input: (start, end) records for sub-ranges to integrate*

Output: integral of f(x) over entire range

Map:
def map(start, end):
sum = 0

for(x = start; x < end; x += step):

sum += f(x) * step
output(“”, sum)

Reduce:
def reduce(key, values):
output(key, sum(values))

*Can implement using custom InputFormat

Ay
Thh
—
S
a l;g:

Outline

MapReduce
MapReduce Examples
Introduction to Hadoop
Beyond MapReduce

Summary

Typical Hadoop cluster

Aggregation switch

<—» 8 gigabit
_ <—» 1 gigabit
Rack switch

Node
< q
w

* 40 nodes/rack, 1000-4000 nodes in cluster
* 1 Gbps bandwidth in rack, 8 Gbps out of rack
* Node specs at Facebook:

8-16 cores, 32 GB RAM, 8x1.5 TB disks, no RA

Typical Hadoop Cluster

Hadoop Components

* MapReduce
— Runs jobs submitted by users

— Manages work distribution & fault-tolerance

* Distributed File System (HDFS)

— Runs on same machines!
— Single namespace for entire cluster

— Replicates data 3x for fault-tolerance

O TEEl G5

Distributed File System

Files split into 128MB blocks

Blocks replicated across
several datanodes (often 3)

Namenode

Namenode stores metadata (file
names, locations, etc)

Optimized for large files,
sequential reads

Files are append-only

Datanodes

Hadoop

Download from hadoop.apache.org
To 1nstall locally, unzip and set JAVA_HOME

Docs: hadoop.apache.org/common/docs/current

Three ways to write jobs:
— Java API

— Hadoop Streaming (for Python, Perl, etc)
— Pipes API (C++)

Word Count 1n Java

public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,

Reporter reporter) throws IOException {
String line = value.toString();

StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {

output.collect(new Text(itr.nextToken()), ONE);
}
}

}

Word Count 1n Java

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

Word Count 1n Java

public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setMapperClass(MapClass.class);

conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

FileInputFormat.setInputPaths(conf, args[0]);
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setOutputKeyClass(Text.class); // out keys are words (strings)
conf.setOutputValueClass(IntWritable.class); // values are counts

JobClient.runJob(conf);

Word Count in Python with
Hadoop Streaming

Mapper.py: import sys
for line in sys.stdin:
for word in line.split():
print(word.lower() + "\t" + 1)

Reducer.py: import sys
counts = {}
for line in sys.stdin:
word, count = line.split("\t")
dict[word] = dict.get(word, @) + int(count)
for word, count in counts:
print(word.lower() + "\t" + 1)

Amazon Elastic MapReduce

(When you’ve had enough with configuring
and deploying a Hadoop clusters manually)

Web interface and command-line tools for
running Hadoop jobs on EC2

Data stored in Amazon S3

Montitors job and shuts down machines when
finished

Elastic MapReduce Ul

Create a New Job Flow Cancel |x

O

DEFINE JOB FLOW

Creating a job flow to process your data using Amazon Elastic MapReduce is simple and quick. Let's begin by giving your job flow a name
and selecting its type. If you don't already have an application you'd like to run on Amazon Elastic MapReduce, samples are available to
help you get started.

Job Flow Name*: My Job Flow

The name can be anything you like and doesn't need to be unique. It's a good idea to name the job flow something
descriptive.

Type*: (® Streaming

A Streaming job flow allows you to write single-step mapper and reducer functions in a language other than java.

(O Custom Jar (advanced)
A custom jar on the other hand gives you more complete control over the function of Hadoop but mus

be a
compiled java program. Amazon Elastic MapReduce supports custom jars developed for Hadoop 0.18.

t
3.
() Pig Program

Pig is a SQL-like languange built on top of Hadoop. This option allows you to define a job flow that runs a Pig script,

or set up a job flow that can be used interactively via SSH to run Pig commands.

() Sample Applications

Select a sample application and click Continue. Subsequent forms will be filled with the necessary data to create a
sample Job Flow.

| Word Count (Streaming) Q Word count is a Python application that counts occurrences of each word
in provided documents. Learn more and view license

‘ Continue Required field

Elastic MapReduce Ul

Create a New Job Flow Cancel | X

Enter the number and type of EC2 instances you'd like to run your job flow on.

Number of Instances*: 4

te the limit request form.

Type of Instance*: [Small (m1.small)]

EC2 instances to ru your Hadoop cluster (learn more about instance types

¥ Show advanced options

Back R * Required field

Elastic MapReduce Ul

.’. " Contact Us ' Create an AWS Account
i55F amazon
© webservices” About AWS Products Solutions Resources Support Your Account
Home = Resources = AWS Management Console BETA = Amazon Elastic MapReduce Welcome, Rad Lab | Settings | Sign Out
' Amazon Elastic Amazon
Amazon EC2 ‘ MapReduce ‘ CloudFront ‘

Your Elastic MapReduce Job Flows

. - | Show/Hid " Refresh Hel
Region: = ys-East v g Create New Job Flow | @ Terminate (5) | S SETES @ Heb

Viewing: | All B‘ l¢ &« 1tolofllobFlows » &

Name State Creation Date Elapsed Time Normalized Instance Hours
My Job Flow) STARTING 2009-08-19 14:50 PDT 0 hours 0 minutes 0
1 Job Flow selected
&y Id: j-46IJL0YQ7ZPH1 Creation Date: 2009-08-19 14:50 PDT m
Name: My Job Flow Start Date: -
State: STARTING End Date: -
Last State Change Reason: Starting instances
Availability Zone: us-east-1b Instance Count: 4 \"
[= — = — = — J Tai» !

© 2008 - 2009, Amazon Web Services LLC or its affiliates. All right reserved. Feedback Support Privacy Policy Terms of Use

Outline

MapReduce
MapReduce Examples
Introduction to Hadoop
Beyond MapReduce

Summary

Beyond MapReduce

* Many other projects follow MapReduce’s
example of restricting the programming model for
efficient execution in datacenters

— Dryad (Microsoft): general DAG of tasks

— Pregel (Google): bulk synchronous processing
— Percolator (Google): incremental computation
— S4 (Yahoo!): streaming computation

— Piccolo (NYU): shared in-memory state

— Dryad LINQ (Microsoft): language integration
— Spark (Berkeley): ...

Spark

* Motivation: iterative jobs (common in machine
learning, optimization, etc)

* Problem: iterative jobs reuse the same working set of
data over and over, but MapReduce / Dryad / etc

require acyclic data flows

* Solution: “resilient distributed datasets” that are cached
in memory but can be rebuilt on failure

Spark Programming Model

* Resilient distributed datasets (RDDs)
— Immutable, partitioned collections of objects

— Created through parallel transformations (map,
filter, groupBy, join, ...) on data in stable storage

— Can be cached for efficient reuse

e Actions on RDDs

— Count, reduce, collect, save, ...

Example: Log Mining

* Load error messages from a log into memory,
then interactively search for various patterns
lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedmsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Fault Tolerance in Spark

 RDDs maintain /ineage information that can be
used to reconstruct lost partitions

* Example:

cachedvMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.cache()

HdfsRDD FilteredRDD | MappedRDD
[path: hdfs://... func: contains(...) func: split(...) H CachedRDD J

Example: Logistic Regression

* Goal: find best line separating two sets of
points

random initial line

targe

Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()
var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1 / (A + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)

Logistic Regression Performance

4500
4000

@ 3500
3000

S)

N
(O3
@)
@)

2000
1500
1000

Running Time

500

5 10 20
Number of Iterations

127 s/ iteration

/

Hadoop
“ Spark

\

first iteration 174 s
further iterations 6 s

30

Interactive Spark

* Ability to cache datasets in memory is great for
interactive data analysis: extract a working set,
cache 1t, query 1t repeatedly

* Modified Scala interpreter to support interactive
use of Spark

* Result: full-text search of Wikipedia in 0.5s after
20-second 1nitial load

Beyond Spark

* Write your own
framework using Mesos,

letting 1t efficiently share

resources and data with
parc Hadoop & ofhers

WWW.mesos-project.org

Outline

MapReduce
MapReduce Examples
Introduction to Hadoop
Beyond MapReduce

Summary

Summary

MapReduce’s data-parallel programming model hides
complexity of distribution and fault tolerance

Principal philosophies:
— Make it scale, so you can throw hardware at problems

— Make it cheap, saving hardware, programmer and
administration costs (but necessitating fault tolerance)

MapReduce is not suitable for all problems, new
programming models and frameworks still being created

Resources

Hadoop: http://hadoop.apache.org/common

Video tutorials: www.cloudera.com/hadoop-training

Amazon Elastic MapReduce:
http://docs.amazonwebservices.com/
ElasticMapReduce/latest/GettingStartedGuide/

Spark: http://spark-project.org

Mesos: http://mesos-project.org

Thanks!

