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Abstract

Automatic speech recognition enables a wide range of
current and emerging applications such as automatic
transcription, multimedia content analysis, and natu-
ral human-computer interfaces. This article provides
a glimpse of the opportunities and challenges that par-
allelism provides for automatic speech recognition and
related application research from the point of view
of speech researchers. The increasing parallelism in
computing platforms opens three major possibilities for
speech recognition systems: increasing recognition ac-
curacy in non-ideal, everyday noisy environments; in-
creasing recognition throughput in batch processing of
speech data; and reducing recognition latency in real-
time usage scenarios. We explain the technical chal-
lenges, the current approaches taken, and the possible di-
rections for future research on these three areas to guide
the design of efficient parallel software and hardware in-
frastructures.

1 Introduction
We have entered a new era where applications can no
longer rely on significant increases in CPU clock rate
for performance improvements, as clock rate is now lim-
ited by factors such as power dissipation [4]. Rather,
parallel scalability (the ability for an application to ef-
ficiently utilize an increasing number of processing ele-
ments) is now required for software to obtain sustained
performance improvements on successive generations of
processors.

Automatic Speech Recognition (ASR) is an applica-
tion area that is consistently at the forefront of exploit-
ing advances in computation capabilities. With the avail-
ability of a new generation of highly parallel single-chip
computation platforms, ASR researchers are again faced
with the question: If you had unlimited computing, how
could you leverage it to make speech recognition better?
The goal of the work reported here is to explore plau-
sible approaches to improve ASR. There are three main
directions for better speech recognition:

1. Improve accuracy: Account for noisy and reverber-

ant environments in which current systems perform
poorly, thereby increasing the range of scenarios
where speech technology can be an effective solu-
tion.

2. Improve throughput: Allow batch processing of
speech recognition task to execute as efficiently as
possible thereby increasing the utility for call cen-
ters and multimedia search and retrieval.

3. Improve latency: Allow speech-based applications,
such as machine translation, to achieve real-time
performance, where speech recognition is just one
component of the application.

This article discusses our current work as well as oppor-
tunities and challenges in these areas with regard to par-
allelization from the point of view of speech researchers.

2 Improving Accuracy
Speech recognition systems can be sufficiently accurate
when trained with sufficient data having similar charac-
teristics to the test conditions. However, there still re-
main many circumstances in which recognition accuracy
is quite poor. These circumstances include input under
noise conditions, even moderate amounts of reverbera-
tion, and any variability between training and recogni-
tion conditions with respect to channel and speaker char-
acteristics (such as style, emotion, topic, accent, and lan-
guage). ASR systems are also very poor at decoding
low-predictability phonetic streams, e.g., random non-
sense syllables, where humans significantly outperform
automatic methods [2].

One approach that is both “embarrassingly” parallel
and effective in improving ASR robustness is the so-
called multistream approach. As has been shown for a
number of years [5, 6, 15, 11], incorporating multiple
feature sets consistently improves performance for both
small and large ASR tasks. And as noted in [23], recent
results have demonstrated that a larger number of feature
representations can be particularly effective in the case
of noisy speech. In order to conduct research on a mas-
sively parallel front end, a large feature space is desired.
One approach that we and others have found to be useful
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is to compute spectro-temporal features. These features
are inspired by studies in neuroscience, which have re-
vealed that neurons in the mammalian auditory cortex
are highly tuned to specific spectro-temporal modula-
tions [9, 16]. It is important to note that various ap-
proaches have been devised to combine and select the in-
herently large number of potential spectro-temporal fea-
tures because processing them entirely is currently con-
sidered computationally intractable.

2.1 Current Approach
Our current preferred approach to selective feature ex-
traction is to generate many feature streams using
discriminatively trained Neural Networks (Multi-Layer
Perceptrons or MLPs) using inputs from Gabor filters
corresponding to different points in the rate×scale spec-
tral cube (where rate corresponds to temporal modula-
tion frequency, scale corresponds to spectral modulation
frequency, and “spectral” refers to the more standard fre-
quency axis, warped in a quasi-auditory fashion, as in
the mel, bark, or ERB scales). The MLPs are trained
for discrimination between phones and thus generate es-
timates of posterior phone probability distributions. A
critical theoretical and experimental question is how a
large number of such streams should be best combined.
For MLP-based feature streams, the most common com-
bining techniques are: (1) appending all features to a
single stream; (2) combining posterior distributions by
a product rule, with or without scaling; (3) combining
posterior distributions by an additive rule, with or with-
out scaling; and (4) combining posterior distributions by
another MLP, which may also use other features. When
scaling is used for (2) or (3), there are open questions
on how to do the scaling. When parallelizing the feature
generation and combination, architectural aspects might
start to play a role too.

Our current best approach to combination is to train
an additional Neural Network to generate combination
weights by incorporating entropies from the streams as
well as the original pre-Gabor feature inputs. We used a
28-stream system, including 16 streams from division of
temporal modulation frequencies, 8 streams from divi-
sion by spectral modulation frequencies, and 4 streams
from a division by both [23]. Using this method, for
the Numbers 95 corpus with the Aurora noises added
[12], the average word error rate was 8.1%, reduced
from 15.3% for MFCCs and first and second order time
derivatives. We have also run other pilot experiments
that are encouraging. While robustness to environmen-
tal acoustics is our main focus, it was important to per-
form pilot experiments with both small and large vocab-
ulary tasks using “clean” data, so that we could con-
firm that the particular form of expanded front end that
we favored did not hurt us for a task of scale. Pre-

liminary results have been obtained using a four-stream
system on the Mandarin Broadcast news corpus used in
DARPA GALE evaluations. In this case we used four
equally weighted streams, with quasi-tonotopically di-
vided spectro-temporal features. The system yielded a
13.3% relative improvement on the baseline, lowering
word error rate from 25.5% to 22.1% The relative im-
provement in performance is lower than the 47% ob-
tained for the Numbers95 corpus but it is comparable
to what we have seen in other examples of moving tech-
niques from small to large vocabulary tasks, particularly
for similar cases where the training and test conditions
are well matched.

2.2 Future Directions
In the current approach we apply the same modulation
filters to the entire spectrum. Within this one feature
stream, a pipe-and-filter parallel pattern can be used to
distribute work across processing elements. Since the
MLPs used within the stream depend on dense linear al-
gebra, the wealth of methods to parallelize matrix oper-
ations can be exploited. We can also potentially expand
the 28 streams to hundreds to thousands of streams by
applying the Gabor filters to different parts of the spec-
trum as separate streams using a map-reduce parallel
pattern.

We expect these techniques will be even more im-
portant to analyze speech from distant microphones at
meetings, a task that naturally provides challenges due
to noise and reverberation. Finally, there will be more
parallelization considerations in combining the manys-
tream methods with mainstream approaches to noise ro-
bustness. We think that the area of manystream feature
combination might naturally adapt to parallel comput-
ing architectures and, at the same time, the expected im-
provement is significant.

3 Improving throughput
Batch speech transcription can be “embarrasingly par-
allel” by distributing different speech utterances to dif-
ferent machines. However, there is significant value in
improving compute efficiency, which is increasingly rel-
evant in today’s energy limited and form-factor limited
devices and compute facilities.

The many components of an ASR system can be par-
titioned into a feature extractor and an inference engine.
The speech feature extractor collects feature vectors
from input audio waveforms using a sequence of signal
processing steps in a data flow framework. Many levels
of parallelism can be exploited within a step, as well as
across steps. Thus feature extraction is highly scalable
with respect to the parallel platform advances. However,
parallelizing the inference engine involves surmounting
significant challenges.
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Our inference engine traverses a graph-based recogni-
tion network based on the Viterbi search algorithm [17]
and infers the most likely word sequence based on the
extracted speech features and the recognition network.
In a typical recognition process, there are significant par-
allelization challenges in concurrently evaluating thou-
sands of alternative interpretations of a speech utterance
to find the most likely interpretation. The traversal is
conducted over an irregular graph-based knowledge net-
work and is controlled by a sequence of audio features
known only at run time. Furthermore, the data working
set changes dynamically during the traversal process and
the algorithm requires frequent communication between
concurrent tasks. These problem characteristics lead to
unpredictable memory accesses and poor data locality
and cause significant challenges in load balancing and
efficient synchronization between processor cores.

There have been many attempts to parallelize speech
recognition on emerging platforms, leveraging both fine-
grained and coarse-grained concurrency in the applica-
tion. Ravishankar in [20] mapped fine-grained concur-
rency onto the PLUS multiprocessor with distributed
memory. The implementation statically mapped a care-
fully partitioned recognition network onto the multipro-
cessors to minimize load imbalance. Ishikawa etȧl. [14]
explored coarse-grained concurrency in LVCSR and im-
plemented a pipeline of tasks on a cellphone-oriented
multicore architecture. You et al. [22] have recently pro-
posed a parallel LVCSR implementation on a commod-
ity multicore system using OpenMP. The Viterbi search
was parallelized by statically partitioning a tree-lexical
search network across cores. The parallel LVCSR sys-
tem proposed by Phillips et al. also uses WFST and
data parallelism when traversing the recognition net-
work [19]. Prior works such as [10, 7] by Dixon et al.
and Cardinal et al. leveraged manycore processors and
focused on speeding up the compute-intensive phase
(i.e., observation probability computation) of LVCSR on
manycore accelerators. Both [10, 7] demonstrated ap-
proximately 5x speedups in the compute-intensive phase
and mapped the communication intensive phases (i.e.,
Viterbi search) onto the host processor. This software
architecture incurs significant penalty for copying inter-
mediate results between the host and the accelerator sub-
system and does not expose the maximum potential of
the performance capabilities of the platform.

3.1 Current Approach
More recently, we implemented a data-parallel au-
tomatic speech recognition inference engine on the
NVIDIA GTX280 graphics processing unit (GPU),
achieving over 11x speedup compared to SIMD opti-
mized sequential implementation on an Intel core i7
CPU, with less than 8% sequential overhead, promising
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Figure 1: Decoder Architecture as described in Section 3.1.

more speedup on future more parallel platforms [8]. The
speedup was enabled by constructing the recognition
engine’s software architecture to efficiently execute on
single-chip manycore processors. There are four key im-
plementation decisions that contributed to the speedup:

1. Exposing fine-grained parallelism: The software
architecture of the inference engine is illustrated in Fig-
ure 1. The hidden Markov model (HMM) based in-
ference algorithm dictates that there is an outer iter-
ation processing one input feature vector at a time.
Within each iteration, there is a sequence of algorithmic
steps implementing maximal-likelihood inference pro-
cess. The parallelism of the application is inside each al-
gorithmic steps, where the inference engine keeps track
of thousands to tens of thousands of alternative inter-
pretations of the input waveform. The challenge is that
each algorithmic step only performs tens to hundreds of
instructions on each alternative interpretation, thus syn-
chronizations between the algorithmic steps impose se-
quential overheads. In multi-chip parallel platforms, the
synchronization overhead significantly degrades parallel
speedup. The opportunity brought by single-chip many-
core parallel processors is that the synchronization over-
head is significantly reduce to the point that the fine-
grained parallelism can be exposed and the application
speedup potentials can be realized.

2. Implementing all parts of an algorithm on GPU:
Current GPUs are accelerator subsystem managed by a
CPU over the PCI-express data bus. With close to a
TeraFLOP of compute capability on the GPUs, mov-
ing operands and results between CPU and GPU can
quickly become a performance bottleneck. In the in-
ference engine, there is a compute intensive phase and
a communication intensive phase of execution in each
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inference iteration. The compute intensive phase calcu-
lates the sum of differences of a feature vector against
Gaussian mixtures in the acoustic model and can be
readily parallelized. The communication intensive phase
keeps track of thousands of alternative interpretations
and manages their traversal through a complex finite
state transducer representing the pronunciation and lan-
guage models. While we achieved 17.7x speedup for the
compute-intensive phase compared to sequential execu-
tion on the CPU, the communication-intensive phase is
much more difficult to parallelize and received a 4.4x
speedup. However, because the algorithm is completely
implemented on the GPU, we are not bottlenecked by the
communication of intermediate results between phases
over the PCI-express data bus, and have achieved a 11.3x
speedup of the overall inference engine.

3. Leveraging fast hardware atomic operation sup-
port: The inference process is composed of data-parallel
graph traversals on the recognition network. The graph
traversal routines are executing in parallel on difference
cores and frequently have to update the same memory
location. This causes race conditions as the same piece
of data must be read and conditionally written by mul-
tiple instruction streams at the same time. This condi-
tion can be resolved using a sequence of data-parallel
algorithmic steps in the application software or by using
hardware-base atomic operation support. When leverag-
ing hardware-based atomic operation support, however,
the operations must be carefully managed as atomic op-
erations to the same memory address are sequentialized.
We leverage hardware atomic operation support at two
levels: the core-level and the chip-level to avoid signifi-
cant sequentialization of atomic operations.

4. Construct runtime data buffers to maximally reg-
ularize data access patterns: The recognition network is
an irregular network and the traversal through the net-
work is guided by user input available only at runtime.
To maximally utilize the memory load and store band-
width, we regularize the data access pattern by using a
set of runtime data buffers. In each iteration of the in-
ference engine, we gather the data to be accessed during
the iteration into a consecutive vector, such that the al-
gorithmic steps in the iteration are able to load and store
results one cache line at a time, maximizing the utiliza-
tion of the available data bandwidth to memory.

With these four key implementation decisions, we are
able to overcome the parallelization challenges imposed
by the application, and architect and implement a scal-
able parallel solution for speech recognition inference
decoding.

3.2 Future Directions
The current work established an efficient software archi-
tecture for speech recognition targeting the highly par-

allel manycore platforms. Our ongoing work is con-
structing an application framework that allows many ad-
ditional features to be extended without jeopardizing the
efficiency and throughput of the implementation. One
example of such additional feature can be an alterna-
tive observation likelihood computation that reduces the
amount of computation necessary. Other improvements
to the software architecture include producing word lat-
tices or confusion-networks in the context of multiple-
pass recognition systems. More generally, the through-
put of a recognition engine can be further increased by
distributing the workload to multiple processing nodes
in a cluster of machines, where each machine can host
multiple multicore and manycore processing units. The
improvements in recognition throughput could also be
used to trade off speed with accuracy, making viable ap-
proaches such as fast combination of results from multi-
ple recognition engines with Recognizer Output Voting
Error Reduction (ROVER) techniques.

4 Improving Latency
The parallelization of feature extraction and inference
engine is being done as part of a larger goal, namely the
parallelization of full applications in the Berkeley Paral-
lel Computing Laboratory [18]. Our application is called
the “meeting diarist”, in which users can access infor-
mation from speech uttered in multiparty meetings. For
speech recognition to be useful in multispeaker scenar-
ios, it is also important to determine “who is speaking
when”, a process called “speaker diarization”, and to
further segment the speech in a way that is reasonable
for human consumption. Ultimately we need to imple-
ment and examine the entire application so that we can
better understand the sequential roadblocks to exploiting
parallelism. This is ongoing research and is by no means
complete but we will use the example of speaker diariza-
tion to explain the opportunities of improving latency.

Most speaker diarization systems use agglomerative
hierarchical clustering as a core approach to perform di-
arization. At a high-level, systems extract MFCC fea-
tures from a given audio track, discriminate between
speech and nonspeech regions (speech activity detec-
tion), and use the agglomerative clustering approach
to perform both segmentation of the audio track into
speaker-homogeneous time segments and the grouping
of these segments into speaker-homogeneous clusters in
one step. Speech activity regions are determined us-
ing a speech/non-speech detector, e.g., [21]. The non-
speech regions are then excluded from the agglomera-
tive clustering where the clustering is initialized using k
clusters, with k larger than the number of speakers that
are assumed to appear in the recording. Every cluster
is modeled with a Gaussian Mixture Model containing
g Gaussians. In order to train initial GMMs for the k
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speaker clusters an initial segmentation is generated by
uniformly partitioning the audio into k segments of the
same length. The ICSI system [1, 3] then performs the
following iterations:

Re-Segmentation: Run VITERBI alignment to find
the optimal path of frames and models. In the ICSI
system, a minimum duration of 2.5 seconds is assumed
for each speech segment. Re-Training: Given the new
segmentation of the audio track, compute new Gaussian
Mixture Models for each of the clusters. Cluster Merg-
ing: Given the new GMMs, try to find the two clusters
that most likely represent the same speaker. This is done
by computing a score based on the Bayesian Information
Criterion (BIC) of each of the clusters and the BIC score
of a new GMM trained on the merged segments for two
clusters. If the BIC score of the merged GMM is larger
than or equal to the sum of the individual BIC scores,
the two models are merged and the algorithm continues
at the re-segmentation step using the merged GMM. If
no pair is found, the algorithm stops.

As a result of different sequential optimization ap-
proaches [13], our current implementation runs at about
0.6× realtime, i.e. for 10 minutes of audio data, diariza-
tion finishes in roughly 6 minutes. The main problem
with the approach is, however, that it requires the com-
plete recording of a meeting file and so the latency is
the time of the meeting + 0.6× realtime of the meeting
duration. There are many applications where online di-
arization is desirable and batch processing impractical.

4.1 Current Approach
An initial approach to online diarization was presented
in the NIST RT ’09 evaluations. The system consisted
of a training step and an online recognition step. For the
training step, we took the first 1000 seconds the meet-
ing and perform an offline speaker diarization using the
system described above. We then trained speaker mod-
els and a speech/non-speech model from the the output
of the system. This is done by concatenating 60 random
seconds of each speaker’s segmented data and the non-
speech segments.

In the online recognition step, we recognize the re-
minder of the meeting using the trained models. The
sampled audio data is noise-reduced and converted into
MFCC features. For every frame, the likelihood for each
set of features is computed against each set of Gaussian
Mixtures obtained in the training step, i.e. each speaker
model and the non-speech model. A total of 250 ten ms-
frames is used for a majority vote on the likelihood val-
ues to determine the classification result. Therefore the
latency totals at t + 2.5 s per decision (plus the portion
of the offline training).

Such a system can significantly benefit from paral-
lelism. First, if the offline diarization were two order-

of-magnitude faster than realtime, the offline diarization
could process one minute of meeting in less than a sec-
ond. The proposed online system could then run the of-
fline system in the background constantly to update the
models with the best solution found taking into account
the entire meeting so far.

4.2 Future Directions
Parallelism can be leveraged for low latency on different
levels. The training of Gaussian Mixture Modes mainly
requires matrix computation. If matrix computation is
sped up by parallelism, more training can be run in
the background at reduced wait times, resulting in both
higher accuracy and lower latency. Also, giving models
more iterations often leads them to converge with even
less data which also reduces latency. In the concrete ex-
ample of diarization, lower runtime and therefore lower
latency can be achieved by speeding up the cluster merge
process, which might be parallelized on a thread level
or using data parallelism by distributing each speaker
model to a different core. With incoming data arriving
through a sound card, USB device, or harddisk I/O oper-
ations are likely to become a significant part of the run-
time once parallelism is used intensively. Also, in the
past we found that caching of highly repeated low-level
operations (e.g., logarithm computations) helps runtime
significantly. Therefore, a central cache for repeated op-
erations seems highly desirable.

5 Conclusions
Automatic Speech Recognition (ASR) is an application
area that consistently benefits from increasing capabili-
ties of computation platforms. With the increasing adop-
tion of parallel multicore and manycore processors, we
see significant opportunities for speech recognition in
three areas: increasing recognition accuracy, increasing
batch-recognition throughput, and decreasing recogni-
tion latency. In this paper, we have referenced selected
work from a vast base of literature that help to leverage
the increasing compute capabilities to improve recogni-
tion performance. We have presented our on-going work
in the three improvement areas focusing on the opportu-
nities and challenges in these areas with regard to paral-
lelization from the point of view of speech researchers.
We believe the proposed directions for future research
can serve to guide future designs of efficient parallel
software and hardware infrastructures for speech recog-
nition.
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