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Abstract
We report progress in the use of multi-stream spectro-temporal
features for both small and large vocabulary automatic speech
recognition tasks. Features are divided into multiple streams
for parallel processing and dynamic utilization in this approach.
For small vocabulary speech recognition experiments, the in-
corporation of up to 28 dynamically-weighted spectro-temporal
feature streams along with MFCCs yields roughly 21%
improvement on the baseline in low noise conditions and 47%
improvement in noise-added conditions, a greater improvement
on the baseline than in our previous work. A four stream
framework yields a 14% improvement over the baseline in
the large vocabulary low noise recognition experiment. These
results suggest that the division of spectro-temporal features
into multiple streams may be an effective way to flexibly utilize
an inherently large number of features for automatic speech
recognition.

Index Terms: spectro-temporal features, speech recognition

1. Introduction
In order to extract important dynamic information, cortically-
inspired spectro-temporal features, which simultaneously cap-
ture spectral and temporal modulation frequencies, have re-
cently been used in speech recognition and speech discrim-
ination tasks [1-5]. Despite the number of promising ap-
proaches, the utilization and selection of the many possible
spectro-temporal features continue to be a challenge, especially
for large-vocabulary tasks.

Humans are most sensitive to temporal modulation frequen-
cies up to 16 Hz and spectral modulation frequencies up to 2
cycles per octave [6]. Depending on the desired resolution, it
may be possible to have many thousands of filters, each extract-
ing a different combination of spectral and temporal modulation
frequencies, while centering on different spectral bands or chan-
nels. The relative importance of the features may vary depend-
ing on the context. Thus, there is a need to continue exploring
the saliency of spectro-temporal-features in different environ-
ments as well as methods that allow the dynamic weighting or
selection of these features.

2. Related work
There are a number of common methods for the optimal re-
duction of feature-space dimension, such as is currently re-
quired for spectro-temporal features. One such approach is
supervised-parameter selection using trained classifiers such
as feature-finding neural networks, where optimized features
sets are obtained through repeated trials of replacing the fea-
ture that leads to the smallest increase in classification er-

ror with a randomly-drawn one [1]. Alternatively, a winner-
take-most algorithm, where the least-active spectro-temporal
neurons are suppressed, has also been successfully employed
for automatic speech recognition [2]. A different approach,
used for automatic speech-and-non-speech distinction [3], in-
volves multi-dimensional Principal Component Analysis (PCA)
through high-order singular value decomposition for decorrelat-
ing and reducing the large number of spectro-temporal features.

In addition to these methods, multi-stream approaches,
which focus on feature division, have also shown promise in
effectively utilizing spectro-temporal features for improving
speech recognition performance in both clean and noisy con-
ditions [4, 5, 7]. Multi-stream approaches have been used for
some time for speech recognition systems; for instance, in
multi-band approaches [8] and for the combination of PLP-
based and temporal-based critical band features [9]. In multi-
stream approaches, features are generally divided along the
spectral and/or temporal axis, consistent with physiological and
psycho-acoustical findings from human and other mammalian
audition. Advantages to the multi-stream approach are that fea-
tures may be divided into streams for parallel processing and
dynamic weighting or selection, thereby presenting a flexible
framework for adapting to the ever-changing acoustic environ-
ment.

3. Multi-stream spectro-temporal features
for tandem recognition system

3.1. Spectro-temporal feature stream calculation

Spectro-temporal features are extracted from the speech sig-
nal using 2-D Gabor filters, employing the method detailed in
[1, 5]. The input signal is processed with DC removal, pre-
emphasis, Hamming windowing of 25ms in length with 10ms
offset, FFT, summation of the resulting squared magnitudes into
23 mel-frequency channels with center frequencies from 124 to
3657 Hz, followed by a log calculation. The number of mel-
frequency channels and center frequencies are calculated for
telephone speech (8-kHz sampling rate). 2-D Gabor filtering
is performed on the resulting log mel-spectrogram. The magni-
tude of the complex output is taken as the final spectro-temporal
feature; in effect, there is one feature per filter, per time frame.
Detailed explanations, along with mathematical descriptions of
the process and of the Gabor filters can be found in [1].

The 2-D Gabor filters used in this study vary in spectral-
modulation frequency, temporal-modulation frequency, and in
the mel-frequency channel on which the filter is centered.
The spectral-modulation frequencies may range from 0.04 cy-
cles per channel to 0.52 cycles per channel. The temporal-
modulation frequencies range from ±2Hz to ±16Hz. These
modulation frequency ranges are chosen based on human-



sensitivity data [6] as well as findings on the relative impor-
tance of temporal modulation frequencies for automatic speech
recognition [10]. The filters may be centered on any of the 23
mel-frequency channels.

In this multi-stream approach, the spectro-temporal fea-
tures are divided into multiple, parallel streams. Each stream
is further processed by a multi-layer perceptron (MLP) that has
been discriminantly trained to estimate the posterior probabil-
ities for phone categories, as is commonly done using a Tan-
dem system [11] for recognition experiments. A total of 28
different streams are used in this study. Table 1 contains the
range of spectro-temporal modulation frequencies captured by
each stream. Three different feature stream divisions meth-
ods are employed. Streams 1 through 16 are divided mainly
along the temporal modulation domain; each extracts 4 combi-
nations of spectro-temporal modulations, 4 spectral-only modu-
lations, and 1 temporal-only modulation for each mel-frequency
channel. Streams 17 through 24 are divided along the spectral
modulation domain; each extracts 8 combinations of spectro-
temporal modulations, 8 temporal-only modulations, and 1
spectral-only modulation for each channel. The last 4 streams
are divided in both the spectral and temporal domains. Streams
25 through 27 contain filters that extract 12 different combina-
tions of spectro-temporal modulations, while Stream 28 extracts
14 different combinations. In addition, Streams 25 through 27
each extracts 4 temporal-only modulations (2-5Hz, 6-9Hz, and
10-13Hz, respectively) and 6 spectral-only modulations (0.04-
0.14cyc/chan, 0.16-0.26cyc/chan, and 0.28-0.38cyc/chan, re-
spectively). Stream 28 extracts 3 temporal-only modulations
(14-16Hz) and 6 spectral-only modulations (0.4-0.5cyc/chan).

3.2. Feature stream combination

Figure 1 illustrates the usage of MLP-transformed spectro-
temporal feature streams in our systems, where the number
of outputs for each MLP correspond to 56 phones for the En-
glish small vocabulary corpus and 72 phones for the Mandarin-
Chinese large vocabulary corpus.

The different sets of phone posteriors may be combined
statically or dynamically. One method of static combination is
to equally weight each set, effectively taking the average across
the streams of phone likelihood outputs. This method was em-
ployed in our previous study [5] of a 4-stream framework of
spectro-temporal features.

Alternatively, the different sets of MLP outputs may be
dynamically combined using stream-specific inverse-Entropy-
based weighting [12] or weight generating MLPs. In this study,
a single weight-generating MLP is used; inputs consist of 39
Mel-frequency Cepstral Coefficient (MFCC) features, consist-
ing of 13 MFCCs as well as their first and second-order deriva-
tives, and stream-specific frame-level inverse entropies for each
frame of the input signal. The weight-generating MLP output
for each stream can be viewed as the posterior probability of
that stream being the best one. The weight-generating MLP is
trained on hard-target labels, where one stream is selected to
be the best stream for that frame based on frame-level perfor-
mance. Ties in frame-level performance are broken by the prod-
uct of frame-level performance, utterance-level performance,
and overall performance of each stream.

Only one type of merging method is used throughout each
recognition experiment trial. The outcome should be a single
merged phone-probability vector; the vector is decorrelated and
its dimensionality is reduced using the PCA transform calcu-
lated from the training set.

Feature No. of Spectral Temporal
Stream No. Features Mod.(cyc/chan) Mod.(Hz)

1 207 0.1, 0.16, 0.22, 0.28 2
2 207 0.34, 0.4, 0.46, 0.52 2
3 207 0.1, ..., 0.28 4
4 207 0.34, ..., 0.52 4
5 207 0.1, ..., 0.28 6
6 207 0.34, ..., 0.52 6
7 207 0.1, ..., 0.28 8
8 207 0.34, ..., 0.52 8
9 207 0.1, ..., 0.28 10

10 207 0.34, ..., 0.52 10
11 207 0.1, ..., 0.28 12
12 207 0.34, ..., 0.52 12
13 207 0.1, ..., 0.28 14
14 207 0.34, ..., 0.52 14
15 207 0.1, ..., 0.28 16
16 207 0.34, ..., 0.52 16
17 391 0.04 2, ..., 16
18 391 0.1 2, ..., 16
19 391 0.16 2, ..., 16
20 391 0.22 2, ..., 16
21 391 0.28 2, ..., 16
22 391 0.34 2, ..., 16
23 391 0.4 2, ..., 16
24 391 0.46 2, ..., 16
25 506 0.04, ... ,0.5 ±2

0.04 ±4
26 506 0.13, ..., 0.5 ±4

0.04, 0.13 ±7
27 506 0.24, 0.36, 0.5 ±7

0.04, 0.13, 0.24 ±11
28 529 0.36, 0.5 ±11

0.04, ..., 0.5 ±16

Table 1: Range of spectro-temporal modulation frequencies
captured by each of the 28 feature streams.

Figure 1: Multi-stream spectro-temporal feature streams for a
MLP/SRI-recognizer tandem system.



Numbers95 Corpus
WER WER

MFCC features
(baseline) 2.9% 15.3%

MFCC features +
Spectro-temporal 2.3% 8.1%

features

Table 2: Comparison of numbers recognition performance of
a Tandem system using only MFCC features, consisting of 13
MFCCs and their first and second order derivatives, and MFCC
features with multi-stream spectro-temporal features.

4. Small vocabulary task - Numbers95
Corpus

Recognition experiments are conducted on the Numbers95 Cor-
pus [13] using the Tandem recognition system described above.
The corpus contains various numeric portions from telephone
dialogues of male and female American-English speakers, with
a vocabulary of 32 words. The training set for the experiments
contains 3590 utterances in clean condition, roughly totaling 3
hours. The testing set contains 1227 utterances, roughly totaling
1 hour; these utterances are exclusive of the training set. There
are two experimental conditions for the testing set; one contains
all testing-set utterances in clean condition; the other contains
the utterances in noise-added conditions. The noise-added test
set is created using the principles delineated in the Aurora 2
task [14] using noises of different signal-to-noise ratios from
the RSG-10 collection [15].

4.1. Feature streams

A total of 28 streams of spectro-temporal features, as listed in
Table 1, are used. The streams are used in the Tandem speech
recognition framework, employing a dynamic combination de-
sign of merging the stream-specific MLP outputs through a
weight-generating MLP, as described in the previous section.
The single merged 56-phone-posterior vector is decorrelated us-
ing PCA and its dimensionality is reduced to 32 components. A
concatenated 71-feature vector, consisting of 39 MFCC features
and the 32 spectro-temporal features, serves as input to SRI’s
DECIPHER. The features are mean and covariance normalized
on a speaker basis. The recognizer uses gender-independent,
within-word triphone Hidden Markov Models (HMMs); cross-
word triphone models are not utilized.

4.2. Recognition task results

Table 2 lists the results of the numbers recognition experiments.
Training was conducted on clean Numbers95 utterances for
both experiments. For the clean condition, the baseline per-
formance of the Tandem system using 39 MFCC-based features
yielded a word-error rate (WER) of 2.9%. Augmenting the fea-
tures with the spectro-temporal features yielded a word-error
rate of 2.3%, a 21% relative improvement on the baseline. A
matched-pairs sentence-segment word-error test showed statis-
tical significance with a p-value of less than 0.01, While this is
a strong result, we have observed somewhat better performance
using a smaller number of streams [5], so the stream weighting
method is still not optimum.

Mandarin Broadcast News/Conversation
CER

MFCC features
(baseline) 25.8%

MFCC features +
Spectro-temporal features 22.1%

Table 3: Comparison of Mandarin broadcast news and conver-
sation speech recognition performance of a Tandem system us-
ing only MFCC features, consisting of 13 MFCCs and their first
and second order derivatives, and MFCC features with multi-
stream spectro-temporal features.

For the noisy condition, results are more dramatic. With the
same training conducted on clean-condition only utterances, the
baseline performance yielded a word-error rate of 15.3% for the
noise-added test condition, while the system under test yielded
a word-error rate of 8.1%, a 47% improvement on the baseline,
a strong result (easily showing statistical significance for p less
than 01). This result, using more streams and the MLP-based
weighting approach, is notably better than the 30% relative im-
provement on the baseline for noise-added Numbers95 corpus
using 4 equally-weighted spectro-temporal streams, as reported
in our previous study [5].

5. Large vocabulary task - Mandarin
broadcast news and conversation

For the large vocabulary speech recognition task, experiments
are conducted on the Mandarin-Chinese broadcast news corpus
used in DARPA GALE evaluations. The vocabulary is roughly
60,000 words. The training data comprises 100 hours sam-
pled from the Mandarin Hub4 (30 hours), TDT4 (89 hours)
and GALE Year 1 (747 hours) corpora and includes 50 hours
of broadcast news and 50 hours of broadcast conversation data.
Finally, the test data for this task is the DARPA GALE 2006 test
set[eval06].

5.1. Feature streams

Due to the larger size of this task, a 4-stream system, consist-
ing of features divided along both spectral and temporal mod-
ulation domains (Streams 25 through 28 in Table 1) is used for
the Mandarin broadcast news corpus. These 4 equally-weighted
streams, with quasi-tonotopically divided spectro-temporal fea-
tures, have been used with promising results in earlier work on
the Numbers95 Corpus conducted in this lab [5].

Each stream is trained with an MLP. The MLP input layer
for first three streams (Streams 25 through 27 in Table 1)
had 4554 units, representing 9 frames of context for a 506-
dimensional features, while the input layer for the other stream
had 4761 units (since this feature is 529-dimensional). The hid-
den layer for all four streams are 1150 units. The output layer
is 71 phones excluding the reject phone. The log outputs for
the four streams are averaged and we use the Karhunen-Loeve
Transform (Principle Components Analysis) to reduce the di-
mensionality to 32.

We combine these features with 13-dimensional MFCCs
(vocal tract length normalized) with its first and second deriva-
tives. Moreover, since Mandarin is a tonal language, we in-
cluded smoothed log-pitch features as described in [16] and first



and second derivatives.
The input features described above are the input to SRI’s

DECIPHER. The features are mean and variance normalized
per speaker. Within-word triphone HMM models are based
on a 72-phone model comprising consonants and tonal vow-
els. Parameters were shared across 2000 states clustered with
a phonetic decision tree, and a diagonal-covariance GMM with
32 mixture components modeled the observation distribution.
Maximum Likelihood estimation was used to estimate the pa-
rameters.

5.2. Recognition results

Table 3 lists the results of the large-vocabulary Mandarin
speech recognition experiment. The baseline performance of
the Tandem system using 39 MFCCs yielded a character-error
rate(CER) of 25.8%. The system under test yielded a CER
of 22.1%, a 14% relative improvement on the baseline. The
matched-pairs sentence-segment word-error test resulted in a p-
value of less than 0.05, indicating a statistically significant im-
provement. The results are comparable to that obtained using
PLP Tandem features, which have been tuned for the task (e.g.,
for optimal dimensionality reduction).

The relative improvement in performance is lower than that
obtained for the Numbers95 corpus. This reduced improvement
is similar to what have been observed in other examples of mov-
ing techniques from small to large vocabulary tasks. Neverthe-
less, this preliminary result is quite encouraging, as it can be
quite difficult to obtain a greater than 10% reduction in error on
tasks such as broadcast Mandarin.

6. Conclusions
Multi-stream spectro-temporal features are utilized for both
small and large vocabulary automatic speech recognition tasks.
The incorporation of dynamically-weighted spectro-temporal
feature streams along with MFCCs yields roughly 21% im-
provement over the baseline in clean conditions and 47% im-
provement in noise-added conditions in a small vocabulary
speech recognition task; A less elaborate multi-stream frame-
work yields a 14% improvement over the baseline in the large
vocabulary task. The results suggest that the multi-stream ap-
proach may be an effective way to handle and utilize the po-
tentially large number of spectro-temporal features for speech
applications.
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