
Tessellation OS and a Music Application

2. Space-time Partitioning and Two-level Scheduling

Juan A. Colmenares1, Ian Saxton1,2, Rimas Avizienis1,2, Eric Battenberg1,2,
Steven Hofmeyr3, Krste Asanović1, David Wessel1,2, and John D. Kubiatowicz1

1 Par Lab, CS Division, UC Berkeley | 2 CNMAT, UC Berkeley | 3 Lawrence Berkeley National Laboratory

A Spatial Partition (or Cell) comprises a group
of processors acting within a hardware
boundary
Each cell receives a vector of basic resources
–Some number of processors, a portion of physical

memory, a portion of shared cache memory, and
potentially a fraction of memory bandwidth

A cell may also receive
–Exclusive access to other resources (e.g., certain

hardware devices and raw storage partition)
–Guaranteed fractional services (i.e., QoS guarantees)

from other partitions (e.g., network service and file
service)

Spatial partitioning may vary over time
–Partitioning adapts to needs of the system
–Cell can be time multiplexed

Parallel Computing
Laboratory

2nd-level
Scheduling

2nd-level Memory
Management

Address Space A Address Space B

C
e

ll

Ta
sk

Tessellation Kernel
(Partition Support)

Time

Sp
a

ce

 A cell contains channel endpoints to other cells
–Channels allow an application in a cell to access services and to interact
with other applications residing in other cells

–Communication between cells is controlled for QoS enforcement

 Channels enable efficient and non-blocking message passing

CPU

L1

L2
Bank

DRAM

DRAM & I/O Interconnect

L1 Interconnect

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

(+)
Fraction of
memory
bandwidth

1. Basic Goals

 Support a simultaneous mix of high-throughput parallel, interactive, and real-
time applications

 Allow applications to consistently deliver performance
 Enable rapid adaptation
 Provide sufficient scalability

 Scheduling at Level 1: Coarse-grained
resource allocation and distribution at the
cell level
 Scheduling at Level 2: Fine-grained

application-specific scheduling within a cell

3. Music Application

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG0710227)
We like to thank other members of the Par Lab for their help, especially Paul Pearce, David Zhu, and Barret Rhoden.

Network
Service

CNMAT’s Ethernet
Audio Device

Cell B
Ethernet
Switch

Input buffer with 32 samples per
channel generated every 0.6 ms

Audio Processing &
Synthesis Engine

Lithe Runtime

Scheduler

OutputInput

Music Program

Pure Data (pd) Patch

Hardware cores

4. Experimental Results

Net
Service

IO
Handler

Audio Processing &
Synthesis Engine

Cell A
Cell B / Music App

Loopback
Audio Graph

ChannelΔt

Experiment A

Experiment B

Cell A

1
0
 I

/O
 a

u
d
io

ch

a
n
n
e
ls

OutputInput

Send(…)

Receive(…)

Round-trip Time - Experiment B
100,000 measurements @ 2.66GHz, Message Size = 1280 bytes

21.08 µs (56,179 cycles)

Test platform
Intel Core i7

(quad-core processor)
Hyper threading

3GB RAM

Application 1

Cell A

Application 1

Cell B

Service X

Cell C

