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A Spatial Partition (or Cell) comprises a group 
of processors acting within a hardware 
boundary
Each cell receives a vector of basic resources
–Some number of processors, a portion of physical 

memory, a portion of shared cache memory, and 
potentially a fraction of memory bandwidth

A cell may also receive 
–Exclusive access to other resources (e.g., certain 

hardware devices and raw storage partition)
–Guaranteed fractional services (i.e., QoS guarantees) 

from other partitions (e.g., network service and file 
service)

Spatial partitioning may vary over time
–Partitioning adapts to needs of the system
–Cell can be time multiplexed
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 A cell contains channel endpoints to other cells
–Channels allow an application in a cell to access services and to interact 
with other applications residing in other cells

–Communication between cells is controlled for QoS enforcement

 Channels enable efficient and non-blocking message passing
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1. Basic Goals

 Support a simultaneous mix of high-throughput parallel, interactive, and real-
time applications

 Allow applications to consistently deliver performance 
 Enable rapid adaptation
 Provide sufficient scalability

 Scheduling at Level 1: Coarse-grained 
resource allocation and distribution at the 
cell level
 Scheduling at Level 2: Fine-grained 

application-specific scheduling within a cell

3. Music Application
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4. Experimental Results
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Round-trip Time - Experiment B
100,000 measurements @ 2.66GHz, Message Size = 1280 bytes

21.08 µs  (56,179 cycles)
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