1. Motivation

- Performance gap between computation and communication
- Communication cost increases with core count
- We want to determine the actual benefits of trading communication for computation in resource gang-scheduling, which is key to Tessellation OS

2. Basic Goals in Tessellation OS

- Support a simultaneous mix of high-throughput parallel, interactive, and real-time applications
- Allow applications to consistently deliver performance

3. Space-time Partitioning and Two-level Scheduling

- **A Spatial Partition** receives a vector of basic resources
 - A number of hardware threads, a portion of physical memory, a portion of shared cache memory, and a fraction of memory bandwidth
- A Partition may also receive
 - Exclusive access to other resources (e.g., a hardware device and raw storage partition)
 - Guaranteed fractional services from other partitions (e.g., network service)

- Spatial partitioning may vary over time
 - Partitions can be **time multiplexed**: resources are gang-scheduled
 - Partitioning adapts to needs of the system

- **The Cell**: Our partitioning abstraction
 - User-level software container with guaranteed access to resources
 - Basic properties of a cell
 - Full control over resources it owns when mapped to hardware
 - One or more address spaces
 - Communication channels

- **Scheduling at Level 1**: Coarse-grained resource allocation and distribution at the cell level
- **Scheduling at Level 2**: Fine-grained application-specific scheduling within a cell

4. Resource Allocation Architecture

- Distributes resources among cells
- Establishes how cells should be time multiplexed
- Assigns specific resources to cells
- Produces only feasible mappings
- Rejects invalid and infeasible STRGs
- Determines when cells should be activated and suspended
- Actually activates and suspends cells

5. Communication-Free and Centralized Multiplexers

Sample Cell-Core Mapping

Produced by the **Mapper** after checking feasibility

- **Cores with same color**
 - Have the same cells assigned to them
 - Run the same schedule

A Centralized Version

Communication-avoiding Version

6. Gang-Scheduling of Cores and Memory Bandwidth

- Memory bandwidth is a global **shared** resource
- Assume that each core can request its own guaranteed minimum fraction of memory bandwidth
- Independent sets of cells with caps on guaranteed bandwidth
 - Less computation cost for each multiplexer

7. Status

- Initial versions of the gang-scheduling algorithm, centralized multiplexer, and communication-free multiplexer exist and they are being tested
- Implementation of the Mapper is underway

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #010710227)

We like to thank other members of the Par Lab OS Group, especially Sarah Bird, Gage Eads, Steven Hofmeyr, and Krste Asanovic.