Application Modeling and Hardware
Partitioning Mechanisms for
Resource Management

Sarah Bird, Henry Cook, Krste Asanovic, John Kubiatowicz,
Dave Patterson

ParLab Arch and OS Groups

Resource Allocation Objectives

Each partition receives a vector of basic resources dedicated to it
— Some number of processing elements (e.g., cores)
— A portion of physical memory
— A portion of shared cache memory
— A fraction of memory bandwidth
Allocate minimum resources necessary for each applications QoS

requirements
Allocate remaining resources to Resource

meet some system-level objective Group
— Best performance
Resource
— Lowest Ener
ey Sub-Group

Doesn’t require application
developers to worry about low-
level resources

System-wide Adaptation Loop
gt TS
@Creation& Major ang{ \ \

Resizing Requests Redlest R - -
. esource-Allocation Globgl Policies /
fr°m<users i A%rg:]st?cl)(lnn } and Adaptation Use}olicies and
ACK / NACK _ ACKVACK Mechanism Preferences o
Minor Changesl — Q
/ Space-Time (-~r====- \ \/ o
All
Resource Graph :__re_sf)‘ﬁ:;g_j — Online -4
(STRGz-_C_eTI group 1 Offline Models Performance .
I with fraction | @j and Behavioral == Monitoring,
_ofresources _1 \ Parameters Model Building, 4]
: . and Prediction
\ _ @J @J @) ++(Current ResoM /
— ——
Partition 1 o
Mapping and STRG Validator & > Resource g
Multiplexing Resource Planner Plan Executor SA
Layer cD @
"~ Partiion [A— N 38
Mechanism Partition_ ‘ QoS Channel "‘—g:
La eh_]mplamahta t Authenticator l:,
Memory Cache/ Physical Cores) Performance
Bandwidth Local Store Memory Counters

Partitionable Hardware Resources -
e seaas —

APPLICATION MODELING

Motivation

* Programmers are unlikely to know exactly how low-
level resources effect performance
— Developers are concerned application-level metrics

* e.g., frames/sec, requests/sec
— Operating system has to make decisions about resource
qualities
e e.g., number of cores, cache slices, memory bandwidth
* Automatically constructing performance models is a
good way to bridge the gap between application-level
metrics and hardware resources

Model Building

Collect data points of performance for specific

resource allocation vectors
LI - PMI(r(O’I), r(lil), v r(n_l’l))

Use multivariate regression techniques to fit a

model to the data points

Linear and Quadratic

*Advantages
*Simple to build
*Work well with simple
optimizers

*Disadvantages
*Potentially inaccurate
*Can’t represent
variable interaction

GPRS

*Advantages
*Very Accurate

*Disadvantages
*Can overfit the data
*Computationally
expensive to build
*Doesn’t work with
simple optimizers

KCCA

*Advantages
*Can represent all
output metrics in one
model
*Successful in the past

*Disadvantages
*Doesn’t work with
simple optimizers

Model Accuracy

5 1.9
b. P+C-B+ lassses P+C-B-

1.7}

1.6} s

1.5} Py
14}

1.3+ HRTEK.

_2 1 1 1 1 1 1'2

Measured O Additive & Quadratic * GPRS

Model Creation

Online vs. Offline Training

 Offline profiling options

— Profile applications in advance
e Distribute with application
* iTunes App Store or Android Market

— Create application profiles in the Cloud
* Record performance and resource statistics from users
 MSR is currently doing this to make perf. models for app developers

* Online profiling options
— Install time profiling
e Operating system tests out a variety of configurations

— Online refinement of models
e Operating system starts with a generic model
e Retrains the model with new information as the application runs

Performance Isolation

* Without performance isolation,

— An applications performance could
vary widely as a result of concurrently
running applications

))

irus
IntP smn

Mo tor
A&é t)

V| o&

Real-Time

— Inaccurate models R) DU

— Requires different models of the \‘éﬁfi @ﬂ ;:5 ﬁgg‘;‘y
application based on the system load
* Performance predictability is an important component
for application modeling
— Other advantages

e Better tuned, more efficient applications
e Easier to make QoS guarantees

RESOURCE ALLOCATION USING
CONVEX OPTIMIZATION

Minimizing the Urgency of The System

[Burton Smith (MSR), Operating System Resource Management (Keynote), IPDPS 2010]

p Urgency Function Performance Model
U,(L,) / -
—
- a J
r N
Continuously Us(Ls) @a
« .. = >
Minimize X
(subject to L L, | Ly = PMy(r o0y F(0)r -+ F(n-,b)
restrictions on the |
total amount of E
resources) :
1
r . ' D
U,(L,)
/ "

L L = PMi(r(O'i), MLy -eer r(n_l'i))

Urgency Function

[Burton Smith (MSR), Operating System Resource Management (Keynote), IPDPS 2010]
* Reflects the importance of cell C, to the user

U. (L) = MAX(s, - (L, - d.), 0)

U(L) | U(L) |
/<= slope s, = slope

diT L; ’ L.

Service
Requirement

» Performance Model (PM)
Expected to decrease with
resources

ML) Allocation of resource of type 1 to Cell C,

Performance-Aware Convex Optimization
for Resource Allocation

[Burton Smith (MSR), Operating System Resource Management (Keynote), IPDPS 2010]

e Advantages

e Convex optimization is relatively
inexpensive optimization problem with a
single extreme point

e Urgency Function Slopes allow the system
to express relative priorities of application

* Priorities change as a function of
performance

e Urgency Function Intercept encapsulates
QoS requirements

* And additional process can be used to
represent system energy

Very sensitive to the performance models of the applications

HARDWARE PARTITIONING

GSFm: Globally Synchronized Frames

Bandwidth Partitioning for the memory hierarchy

* Frame-Based QoS System Frame 0
— Transactions are labeled with a Frame 1 Frame 1
frame number Frame 2 \ Frame 2
— Head frame moves through the frame I Frame3
window

network with a top priority <hift

with Jae Lee, MIT

GSFm: Globally Synchronized Frames

Bandwidth Partitioning for the memory hierarchy
off-chip

* Uses source-side suppression @_@ DRAMs

* Applications are given a
bandwidth allocation per frame

— Credits per resource |
* Memory channels and memory bank,
network link, etc —
— Memory transactions are charged |

for all possible resources off-chip @— ——@

* Delayed into a future frame if the app DRAM
doesn’t have enough credits >

Networks Memory
c2hREQ h2cRESP h2cREQ C2CRESP channel | bank
1H 1P 0 0 1T 1T

' H: header-only message
' P: header+payload message
. T: memory transaction

Advantages of GSFm

* Minimum Bandwidth Guarantees

— Flexible
— Differentiated
— Weighted sharing of the excess bandwidth

’ GOOd UU'IZatIOn accepted throughput
— Early frame reclamation [flits/cycle/node]
0.06
— Excess bandwidth 0.04

* Minimal Hardware Requirements o.02
— Reasonable area

— Distributed 700, ° 5

Q .

Allocated
to LA
. Allocated
: Allocated to LB
‘ to LA
Allocated
Allocated toLC
to LB
Allocated)
to LC 1
* Way-Based * Bank-Based
— Simple Indexing — Locality in NUCA
— Changes the replacement policy — More complex indexing
— Reduced associativity — Requires flush on reconfiguration
— Limited by number of ways — Limited by number of banks

— No locality for NUCA systems

A SIMPLE EVALUATION

Experimental Platform

« RAMP Gold: FPGA-Based Simulator Target Machine
— 64 single-issue in-order cores @ 1GHz
* Partitionable into sets of 8
— Private L1 Instruction and Data Caches each 32KB

— Shared L2 Cache 8MB inclusive 10 ns latency

e Partitionable into 8 slices using page
coloring

— Memory bandwidth with magic
interconnect

* Partitionable into 3.4 GB/s units
assigned to a set of cores

e ROS Kernel Code
— Microbenchmarks & PARSEC Benchmarks

Application Modeling

e Use 10 sample points
— 18.5% of the 54 Possible Allocations
— Selected using Audze-Eglais Design of Experiments

* Create a model of the application
— Input: Resources
— Output: Performance

* Explore different types of models k
— Linear

— Quadratic
— KCCA (Machine Learning)
— Genetically Programmed Response Surfaces (GPRS)

* Run all 54 Allocations to test model accuracy

Latency

Memory allocation

Scheduling Experiment

* Evaluate Objective Function for a Pair of Benchmarks using
the models

— Race to Halt
* Min Max(Cyclel, Cycle2)

— Least Cycles
* Min (Cyclel*Coresl + Cycle2*Cores2)

— Lowest Energy

* Min X, (resource utilization i*energy parameter i)

— Using MATLAB’s fmincon

* Run all 54 possible resource allocations for each pair of
benchmarks

— Assumes that all resources must be allocated

Sum of Cycles on All Cores (Normalized to Best)

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Spatial Partitioning Results

(7.15)

Blackscholes and Bodytrack and
Streamcluster Streamcluster

Blackscholes and Loop Micro and
Fluidanimate Random Access Micro

B Best Spatial Partitioning

M Divide the Machine in Half

B Prediction with Quadratic Model
I Worst Spatial Partitioning

H Time Multiplexing
B Prediction with Linear Model
¥ Prediction with KCCA Model

Time-Mux’ing is on average of 2x
worse than the best spatial
partition

However the worst spatial
partition is quite bad.

Naively dividing the machine in
half is 1.75x worse than the best
spatial partition

Linear model is within 8% of
optimal every time

Quadratic Model is within 3% of
optimal every time

KCCA does well in some cases but
very poorly in others

Conclusions

e Simple application models show promise

— Still lots of challenges
* When to build?
* How to store?
* Variability
* Resource allocation using convex optimization
potentially very interesting
— Lots of parameters to tune

* How do we set the urgency functions?

— How does it compare with other options?

QUESTIONS?

