Hierarchical Parallelism in a
Partitioned Address Space
Model

Amir Kamil and Katherine Yelick
Par Lab Retreat
June 2, 2011

Electrical Engineering and

Par Lab Research Overview

Computer Sciences

Easy to write correct programs that run efficiently on manycore

— Dignosing Powel{/Perormance

Personal| Image |Hearing, Speech Parallel
Health |Retrieval| Music P Browser
Design Patterns/Motifs

Composition & Coordination Language (C&CL) Static

Verification

C&CL Compiler/interpreter

Type
Systems

Parallel Parallel
Libraries Frameworks

Efficiency -
Autotuners

Communication &
Synch. Primitives
Efficiency Language Compilers

Multicore/GPGPU ParLab Manycore/RAMP

Directed
Testing

Correctness

Dynamic
Checking

Schedulers

Debugging
with Replay

Hierarchical Machines P

BERKELEY PAR LAB

< Parallel machines have hierarchical structure

Dual Socket AMD
MagnyCours

Quad Socket Intel
Nehalem EX

< Expect this hierarchical trend to continue with
manycore

Application Hierarchy

< Applications can reduce communication costs by
adapting to machine hierarchy

= |ocality-awareness: minimize communication
between distant threads, allow communication
between nearby threads

< Applications may also have inherent, algorithmic
hierarchy
= Recursive algorithms
= Composition of multiple algorithms
» Hierarchical division of data

Locality is King

< Programming model must expose locality In

order to obtain good performance on large-scale
machines

< Possible approaches

» Add locality hints to multithreaded languages or
frameworks (e.g. TBB, OpenMP)

= Spawn tasks at specific locality domains (X10,
Chapel)

= Use static number of threads matched to specific
processing cores (SPMD)

« Most Par Lab efficiency layer codes use this approach

Single Program, Multiple Data s

BERKELEY PAR LAB

< Single program, multiple data (SPMD): fixed set

of threads execute the same program image

public static wvoid (String[] args) {
System.out.println("Hello from thread "
+ Ti.thisProc())

Ti.barrier () ;
if (Ti.thisProc() == 0)
System.out.println("Done.") ;

ram Start

Print §§ Print Print Print | Print

Barrier

Program End 6

Partitioned Global Address Space

< Partitioned global address space (PGAS)
abstraction provides illusion of shared memory
on non-shared memory machines

< Pointers can reference local or remote data
* Location of data can be reflected in type system

= Runtime handles any required communication
double[1ld] local srcl = new double[0:N-1];

double[1ld] srcg = broadcast srcl from O;

0 1 2

srcl srcl srcl

*® &

\
srcg srcg Src

Hierarchical Memory

% Previous work extended PGAS model to

hierarchical arrangement of memory spaces

(SAS'07)

< Pointers have varying span specifying how far

away the referenced object can be

= Reflect communication costs

El/%—

O

BV 2
C
D‘*

span 1
(core local)
span 2
(processor local)
span 3
(node local)
span 4

(global)

Hierarchical Computation

% Cha
loca
com

lenge: PGAS memory model expresses
ity, but hard to express hierarchical

outation In SPMD execution model

< Approach: Introduce programming constructs to
Incorporate hierarchy in SPMD/PGAS model

» Address both machine and algorithmic hierarchy

= New constructs should be safe and easy to analyze
< Implementation done in Titanium language

= SPMD/PGAS dialect of Java

= Runtime layer based on GASNet

< Language Extensions
< Case Study: Sorting
< Conclusions and Future Work

10

Thread Teams

< Thread teams are basic units of cooperation
» Groups of threads that cooperatively execute code
= Collective operations over teams

< Teams should be hierarchical
= Match hierarchical nature of machines, algorithms

< Teams should be safe to use

* Should minimize new ways to program erroneously,
e.g. deadlocking

11

Team Data Structure

< Threads comprise teams In tree-like structure
= Allow arbitrary hierarchies (e.g. unbalanced trees)

< First-class object to allow easy creation and
manipulation

= Library functions provided to create regular structures
(e.g. even division of threads, block-cyclic)

0,1,23,45,6,7,8,9,10,11

_—

0,1,2,3 4,5,6,7 3,9,10, 11

AN AN

1,3,2 0 9,8 10, 11

Machine Structure

<+ Need to provide mechanism for querying
machine structure and thread mapping at
runtime

» Right now, we provide a function for constructing a
team that distinguishes between threads that share
memory and those that don't

Team T = Ti.defaultTeam() ;

0,1,23,4,5,6,7

N

0,123 4,5,6,7

13

Language Constructs

< Thread teams may execute distinct tasks
partition(T) {
{ model fluid(); }
{ model muscles(); }
{ model electrical(); }

}

< Threads may execute the same code on
different sets of data as part of different teams
teamsplit (T) {
row_reduce() ;

}

< Lexical scope prevents some types of deadlock

= Constructs can be nested, but actual execution team
IS determined by innermost construct

14

Partition Semantics

< First subteam of T executes model fluid(),
second executes model muscles (), third
executes model electrical ()
partition(T) { -

odel fluid()) }

{model muscles () > }

»

{ @lectrical ()

0123,4,5,6,7,8,9,10, 11

8,9,10,11

15

Teamsplit Semantics

< Each subteam of T executes row reduce () on

ItS own
teamsplit (T) {
row reduce() ;

}

T1 +4—0 1

I
l
o
O
~

T2

T3 F—s 9 |10 | 11

< Language Extensions
< Case Study: Sorting
< Conclusions and Future Work

17

< Distributed sorting application using new
hierarchical constructs

< Three pieces: sequential, shared memory, and
distributed
= Sequential: quick sort reused from Java 1.4 library

» Shared memory: sequential sort on each thread,
merge results from each thread

= Distributed memory: sample sort to distribute
elements among nodes, shared memory sort on each
node

18

Shared Memory Sort

< Divide elements equal

y among threads

Thread O

Thread 2 Thread 3

= No communication required due to shared memory
= No copying required thanks to Titanium’s array views

< Each thread calls sequential sort to process its

elements

19

Shared Memory Merge

<+ Merge In parallel

\Thread 0 \Thread 2/

Thread O

= Number of threads approximately halved in each
iteration

« Non-trivial to determine which threads perform merge when
number of threads is not power of two

Shared Memory Hierarchy

< Team hierarchy Is binary tree
< Trivial construction

static void (Team t) {
if (t.size() > 1) {
t.splitTeam(2) ;
divideTeam(t.child (0)) ;

0,1,23,4,5

N

0,1,2 3,4,5

divideTeam(t.child (1)) ;
}

0,1

}

< Threads walk down to bottom

0

of hierarchy, sort, then walk
back up, merging along the way
= See poster for code

21

SMP Sort and Merge Logic

< Control logic for sorting and merging

static single void (Team t) {
if (Ti.numProcs() == 1) {

}

allRes[myProc] = sequentialSort (myData) ;

else {

teamsplit (t) {
sortAndMerge (Ti.currentTeam()) ;

}

Ti.barrier();

if (Ti.thisProc() == 0) {
int otherProc = myProc + t.child(0) .size()
int[1ld] myRes = allRes|[myProc];
int[1d] otherRes = allRes[otherProc];
int[1ld] newRes =
allRes[myProc] = merge (myRes, otherRes, newRes) ;

target (t.depth() , myRes, otherRes);

22

SMP Sort and Merge Example

% Phase 1: all threads sort

0,1,23,4,5

N

0,1,2

0,1

3,4,5

3,4

23

SMP Sort and Merge Example

< Phase 1: all threads sort
< Phase 2: t0 and t3 merge

0,1,23,4,5

N

0,1,2 3,4,5

24

SMP Sort and Merge Example

o P

o P

o P

nase 1: all threads sort
nase 2: t0 and t3 merge

nase 3: t0 and t3 merge

0,1,23,4,5

N

0,1,2 3,4,5

4

3,
D\

\

SMP Sort and Merge Example

v U U U

nase 1: all threads sort
nase 2: t0 and t3 merge
nase 3: t0 and t3 merge

nase 4: t0O merges

-

0,1,23,4,5

N

0,1,2 3,4,5

NIVAN

Aol

26

SMP Sort Summary

< Hierarchical team constructs allow simple
shared memory parallel sort implementation

= Constructs facilitate expression of parallel recursive
algorithms

< Implementation detalls

= ~90 lines of code (not including test code, sequential
sort)

= 2 hours to implement (including test code) and test

27

Distributed Sort

< EXxisting sample sort written 12 years ago by Kar
Ming Tang

* Not very optimized, but it works (for small number of
threads)

< Algorithm detaills

= At end, elements on thread i sorted and less than any
elements on thread i+1

= Elements initially distributed across threads randomly

* Threads exchange elements to satisfy above property
 Lots of communication involved

* Elements then sorted locally

28

CLUMPS Sort v0.1

< For clusters of SMPs, use sampling and
distribution between nodes, SMP sort on nodes

» Requires fewer messages than pure sample sort, so
should scale better on large number of nodes

< Quick and dirty first version
» Recycle old sampling and distribution code

= Use one thread per node to perform sampling and
distribution

29

CLUMPS Sort v0.1 Code

% Code for v0.1

Team team = Ti.defaultTeam() ;
team.initialize (false);
Team oTeam = new Team() ;
oTeam.splitTeamAll (team.myChildTeam() .myRank () ,
team.myChildTeam() . teamRank ()) ;
oTeam.initialize (false) ;
partition (oTeam) {
{ sampleSort(); }
}
teamsplit (team) {
keys = SMPSort.parallelSort (keys) ;

}
< 12 lines of code, 5 minutes to solution!

30

CLUMPS Sort v0.1 Results = &

BERKELEY PAR LAB

< And it works!

Sample Sort v0.1 (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/node)

18

M pure (sample time) ™ pure (sort time)

16 mixed (sample time) M mixed (sort time)

14

1 2 4 8
Nodes (4 procs/node)
31

CLUMPS Sort v0.9a Results =7 &

BERKELEY PAR LAB

<+ New and improved version with more parallel

distribution
Sample Sort v0.9a (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/proc)

18
M pure (sample time) ™ pure (sort time)
16 mixed (sample time) ® mixed (sort time)
14
12
D
(V]
E
-

10

8

6

4

2

0
1 2 4 8 16 32 64

Nodes (4 procs/node)

128 256

32

Code Composition

< Sampling/distribution code composes cleanly
with SMP sort — no changes to latter required

< Team constructs designed to faclilitate
composition
= Existing calls Ti.thisProc (), Ti.numProcs ()
return thread ID and count relative to current team

= Collective operations (barrier, broadcast) execute
over current team

< EXisting code executes as If its team Is the entire
world

33

< Language Extensions
< Case Study: Sorting
% Conclusions and Future Work

34

Conclusions

< Hierarchical language extensions simplify job of
programmer

= Can organize application around machine
characteristics

» Easier to specify algorithmic hierarchy
= Seamless code composition

= Better productivity, performance with team collectives
« See poster for details

< Language extensions are safe to use

= Safety provided by lexical scoping and a
straightforward extension of LCPC’09 work

35

Future Work

< Machine structure
= Use hwloc library to determine machine structure
= Better representation of machine structure and thread
mapping
= Can we help programmers in mapping application
hierarchies to machine structures?

= How to handle heterogeneity?

<+ Extend compiler analyses to handle new
language constructs

36

This slide intentionally left blank.

37

