
BERKELEY PAR LAB BERKELEY PAR LAB

Hierarchical Parallelism in a

Partitioned Address Space

Model

Amir Kamil and Katherine Yelick

Par Lab Retreat

June 2, 2011

BERKELEY PAR LAB

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview

Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o

s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

2 2

BERKELEY PAR LAB

Hierarchical Machines

 Parallel machines have hierarchical structure

 Expect this hierarchical trend to continue with

manycore
3

Dual Socket AMD
MagnyCours

Quad Socket Intel
Nehalem EX

BERKELEY PAR LAB

Application Hierarchy

 Applications can reduce communication costs by

adapting to machine hierarchy

 Locality-awareness: minimize communication

between distant threads, allow communication

between nearby threads

 Applications may also have inherent, algorithmic

hierarchy

 Recursive algorithms

 Composition of multiple algorithms

 Hierarchical division of data

4

BERKELEY PAR LAB

Locality is King

 Programming model must expose locality in

order to obtain good performance on large-scale

machines

 Possible approaches

 Add locality hints to multithreaded languages or

frameworks (e.g. TBB, OpenMP)

 Spawn tasks at specific locality domains (X10,

Chapel)

 Use static number of threads matched to specific

processing cores (SPMD)

• Most Par Lab efficiency layer codes use this approach

5

BERKELEY PAR LAB

Single Program, Multiple Data

 Single program, multiple data (SPMD): fixed set

of threads execute the same program image
public static void main(String[] args) {

 System.out.println("Hello from thread "

 + Ti.thisProc());

 Ti.barrier();

 if (Ti.thisProc() == 0)

 System.out.println("Done.");

}

6

Program Start

Barrier

Print Print Print Print Print Print Print Print

Program End

Print

BERKELEY PAR LAB

Partitioned Global Address Space

 Partitioned global address space (PGAS)

abstraction provides illusion of shared memory

on non-shared memory machines

 Pointers can reference local or remote data

 Location of data can be reflected in type system

 Runtime handles any required communication

double[1d] local srcl = new double[0:N-1];

double[1d] srcg = broadcast srcl from 0;

7

srcl

srcg

0

srcl

srcg

1

srcl

srcg

2

BERKELEY PAR LAB

Hierarchical Memory

 Previous work extended PGAS model to

hierarchical arrangement of memory spaces

(SAS’07)

 Pointers have varying span specifying how far

away the referenced object can be

 Reflect communication costs

8

B
C

D

A
1

2
3 4

span 1
(core local)

span 2
(processor local)

span 3
(node local)

span 4
(global)

BERKELEY PAR LAB

Hierarchical Computation

 Challenge: PGAS memory model expresses

locality, but hard to express hierarchical

computation in SPMD execution model

 Approach: Introduce programming constructs to

incorporate hierarchy in SPMD/PGAS model

 Address both machine and algorithmic hierarchy

 New constructs should be safe and easy to analyze

 Implementation done in Titanium language

 SPMD/PGAS dialect of Java

 Runtime layer based on GASNet

9

BERKELEY PAR LAB

Outline

 Language Extensions

 Case Study: Sorting

 Conclusions and Future Work

10

BERKELEY PAR LAB

Thread Teams

 Thread teams are basic units of cooperation

 Groups of threads that cooperatively execute code

 Collective operations over teams

 Teams should be hierarchical

 Match hierarchical nature of machines, algorithms

 Teams should be safe to use

 Should minimize new ways to program erroneously,

e.g. deadlocking

11

BERKELEY PAR LAB

Team Data Structure

 Threads comprise teams in tree-like structure

 Allow arbitrary hierarchies (e.g. unbalanced trees)

 First-class object to allow easy creation and

manipulation

 Library functions provided to create regular structures

(e.g. even division of threads, block-cyclic)

12

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11

1, 3, 2 9, 8 10, 11 0

BERKELEY PAR LAB

Machine Structure

 Need to provide mechanism for querying

machine structure and thread mapping at

runtime

 Right now, we provide a function for constructing a

team that distinguishes between threads that share

memory and those that don’t

13

Team T = Ti.defaultTeam();

4

5

6

7

0

1

2

3

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3 4, 5, 6, 7

BERKELEY PAR LAB

Language Constructs

 Thread teams may execute distinct tasks

partition(T) {

 { model_fluid(); }

 { model_muscles(); }

 { model_electrical(); }

}

 Threads may execute the same code on

different sets of data as part of different teams

teamsplit(T) {

 row_reduce();

}

 Lexical scope prevents some types of deadlock

 Constructs can be nested, but actual execution team

is determined by innermost construct
14

BERKELEY PAR LAB

Partition Semantics

 First subteam of T executes model_fluid(),

second executes model_muscles(), third

executes model_electrical()
 partition(T) {

 { model_fluid(); }

 { model_muscles(); }

 { model_electrical(); }

 }

15

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11

BERKELEY PAR LAB

Teamsplit Semantics

 Each subteam of T executes row_reduce() on

its own
 teamsplit(T) {

 row_reduce();

 }

16

=

0 1 2 3

4 5 6 7

8 9 10 11

T1

T2

T3

+

+

+

BERKELEY PAR LAB

Outline

 Language Extensions

 Case Study: Sorting

 Conclusions and Future Work

17

BERKELEY PAR LAB

 Distributed sorting application using new

hierarchical constructs

 Three pieces: sequential, shared memory, and

distributed

 Sequential: quick sort reused from Java 1.4 library

 Shared memory: sequential sort on each thread,

merge results from each thread

 Distributed memory: sample sort to distribute

elements among nodes, shared memory sort on each

node

Sorting

18

BERKELEY PAR LAB

 Divide elements equally among threads

 No communication required due to shared memory

 No copying required thanks to Titanium’s array views

 Each thread calls sequential sort to process its

elements

Shared Memory Sort

Thread 0 Thread 1 Thread 2 Thread 3

19

BERKELEY PAR LAB

 Merge in parallel

 Number of threads approximately halved in each

iteration

• Non-trivial to determine which threads perform merge when

number of threads is not power of two

Shared Memory Merge

Thread 0 Thread 2

Thread 0

20

BERKELEY PAR LAB

 Team hierarchy is binary tree

 Trivial construction

 Threads walk down to bottom

of hierarchy, sort, then walk

back up, merging along the way

 See poster for code

Shared Memory Hierarchy

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

static void divideTeam(Team t) {

 if (t.size() > 1) {

 t.splitTeam(2);

 divideTeam(t.child(0));

 divideTeam(t.child(1));

 }

}

21

BERKELEY PAR LAB

 Control logic for sorting and merging
static single void sortAndMerge(Team t) {

 if (Ti.numProcs() == 1) {

 allRes[myProc] = sequentialSort(myData);

 } else {

 teamsplit(t) {

 sortAndMerge(Ti.currentTeam());

 }

 Ti.barrier();

 if (Ti.thisProc() == 0) {

 int otherProc = myProc + t.child(0).size();

 int[1d] myRes = allRes[myProc];

 int[1d] otherRes = allRes[otherProc];

 int[1d] newRes = target(t.depth(), myRes, otherRes);

 allRes[myProc] = merge(myRes, otherRes, newRes);

 }

 }

}

SMP Sort and Merge Logic

22

BERKELEY PAR LAB

 Phase 1: all threads sort

SMP Sort and Merge Example

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

23

BERKELEY PAR LAB

 Phase 1: all threads sort

 Phase 2: t0 and t3 merge

SMP Sort and Merge Example

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

24

BERKELEY PAR LAB

 Phase 1: all threads sort

 Phase 2: t0 and t3 merge

 Phase 3: t0 and t3 merge

SMP Sort and Merge Example

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

25

BERKELEY PAR LAB

 Phase 1: all threads sort

 Phase 2: t0 and t3 merge

 Phase 3: t0 and t3 merge

 Phase 4: t0 merges

SMP Sort and Merge Example

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

26

BERKELEY PAR LAB

 Hierarchical team constructs allow simple

shared memory parallel sort implementation

 Constructs facilitate expression of parallel recursive

algorithms

 Implementation details

 ~90 lines of code (not including test code, sequential

sort)

 2 hours to implement (including test code) and test

SMP Sort Summary

27

BERKELEY PAR LAB

Distributed Sort

 Existing sample sort written 12 years ago by Kar

Ming Tang

 Not very optimized, but it works (for small number of

threads)

 Algorithm details

 At end, elements on thread i sorted and less than any

elements on thread i+1

 Elements initially distributed across threads randomly

 Threads exchange elements to satisfy above property

• Lots of communication involved

 Elements then sorted locally

28

BERKELEY PAR LAB

 For clusters of SMPs, use sampling and

distribution between nodes, SMP sort on nodes

 Requires fewer messages than pure sample sort, so

should scale better on large number of nodes

 Quick and dirty first version

 Recycle old sampling and distribution code

 Use one thread per node to perform sampling and

distribution

CLUMPS Sort v0.1

29

BERKELEY PAR LAB

 Code for v0.1
 Team team = Ti.defaultTeam();

 team.initialize(false);

 Team oTeam = new Team();

 oTeam.splitTeamAll(team.myChildTeam().myRank(),

 team.myChildTeam().teamRank());

 oTeam.initialize(false);

 partition(oTeam) {

 { sampleSort(); }

 }

 teamsplit(team) {

 keys = SMPSort.parallelSort(keys);

 }

 12 lines of code, 5 minutes to solution!

CLUMPS Sort v0.1 Code

30

BERKELEY PAR LAB

 And it works!

CLUMPS Sort v0.1 Results

0

2

4

6

8

10

12

14

16

18

1 2 4 8

Ti
m

e
 (

s)

Nodes (4 procs/node)

Sample Sort v0.1 (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/node)

pure (sample time) pure (sort time)

mixed (sample time) mixed (sort time)

31

BERKELEY PAR LAB

 New and improved version with more parallel

distribution

CLUMPS Sort v0.9a Results

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32 64 128 256

Ti
m

e
 (

s)

Nodes (4 procs/node)

Sample Sort v0.9a (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/proc)

pure (sample time) pure (sort time)

mixed (sample time) mixed (sort time)

32

BERKELEY PAR LAB

 Sampling/distribution code composes cleanly

with SMP sort – no changes to latter required

 Team constructs designed to facilitate

composition

 Existing calls Ti.thisProc(), Ti.numProcs()

return thread ID and count relative to current team

 Collective operations (barrier, broadcast) execute

over current team

 Existing code executes as if its team is the entire

world

Code Composition

33

BERKELEY PAR LAB

Outline

 Language Extensions

 Case Study: Sorting

 Conclusions and Future Work

34

BERKELEY PAR LAB

 Hierarchical language extensions simplify job of

programmer

 Can organize application around machine

characteristics

 Easier to specify algorithmic hierarchy

 Seamless code composition

 Better productivity, performance with team collectives

• See poster for details

 Language extensions are safe to use

 Safety provided by lexical scoping and a

straightforward extension of LCPC’09 work

Conclusions

35

BERKELEY PAR LAB

 Machine structure

 Use hwloc library to determine machine structure

 Better representation of machine structure and thread

mapping

 Can we help programmers in mapping application

hierarchies to machine structures?

 How to handle heterogeneity?

 Extend compiler analyses to handle new

language constructs

Future Work

36

BERKELEY PAR LAB

This slide intentionally left blank.

37

