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Hierarchical Machines 

 Parallel machines have hierarchical structure 

 

 

 

 

 

 

 

 

 Expect this hierarchical trend to continue with 

manycore 
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Application Hierarchy 

 Applications can reduce communication costs by 

adapting to machine hierarchy 

 Locality-awareness: minimize communication 

between distant threads, allow communication 

between nearby threads  

 Applications may also have inherent, algorithmic 

hierarchy 

 Recursive algorithms 

 Composition of multiple algorithms 

 Hierarchical division of data 
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Locality is King 

 Programming model must expose locality in 

order to obtain good performance on large-scale 

machines 

 Possible approaches 

 Add locality hints to multithreaded languages or 

frameworks (e.g. TBB, OpenMP) 

 Spawn tasks at specific locality domains (X10, 

Chapel) 

 Use static number of threads matched to specific 

processing cores (SPMD) 

• Most Par Lab efficiency layer codes use this approach 
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Single Program, Multiple Data 

 Single program, multiple data (SPMD): fixed set 

of threads execute the same program image 
public static void main(String[] args) { 

  System.out.println("Hello from thread "  

                     + Ti.thisProc()); 

  Ti.barrier(); 

  if (Ti.thisProc() == 0) 

    System.out.println("Done."); 

} 
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Partitioned Global Address Space 

 Partitioned global address space (PGAS) 

abstraction provides illusion of shared memory 

on non-shared memory machines 

 Pointers can reference local or remote data 

 Location of data can be reflected in type system 

 Runtime handles any required communication 

double[1d] local srcl = new double[0:N-1]; 

double[1d] srcg = broadcast srcl from 0; 
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Hierarchical Memory 

 Previous work extended PGAS model to 

hierarchical arrangement of memory spaces 

(SAS’07) 

 Pointers have varying span specifying how far 

away the referenced object can be 

 Reflect communication costs 
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Hierarchical Computation 

 Challenge: PGAS memory model expresses 

locality, but hard to express hierarchical 

computation in SPMD execution model 

 Approach: Introduce programming constructs to 

incorporate hierarchy in SPMD/PGAS model 

 Address both machine and algorithmic hierarchy 

 New constructs should be safe and easy to analyze 

 Implementation done in Titanium language 

 SPMD/PGAS dialect of Java 

 Runtime layer based on GASNet 
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Outline 

 Language Extensions 

 Case Study: Sorting 

 Conclusions and Future Work 
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Thread Teams 

 Thread teams are basic units of cooperation 

 Groups of threads that cooperatively execute code 

 Collective operations over teams 

 Teams should be hierarchical 

 Match hierarchical nature of machines, algorithms 

 Teams should be safe to use 

 Should minimize new ways to program erroneously, 

e.g. deadlocking 
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Team Data Structure 

 Threads comprise teams in tree-like structure 

 Allow arbitrary hierarchies (e.g. unbalanced trees) 

 First-class object to allow easy creation and 

manipulation 

 Library functions provided to create regular structures 

(e.g. even division of threads, block-cyclic) 
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Machine Structure 

 Need to provide mechanism for querying 

machine structure and thread mapping at 

runtime 

 Right now, we provide a function for constructing a 

team that distinguishes between threads that share 

memory and those that don’t 
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Language Constructs 

 Thread teams may execute distinct tasks 

partition(T) { 

  { model_fluid(); } 

  { model_muscles(); } 

  { model_electrical(); } 

} 

 Threads may execute the same code on 

different sets of data as part of different teams 

teamsplit(T) { 

  row_reduce(); 

} 

 Lexical scope prevents some types of deadlock 

 Constructs can be nested, but actual execution team 

is determined by innermost construct 
14 
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Partition Semantics 

 First subteam of T executes model_fluid(), 

second executes model_muscles(), third 

executes model_electrical() 
 partition(T) { 

   { model_fluid(); } 

   { model_muscles(); } 

   { model_electrical(); } 

 } 

15 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11 



BERKELEY PAR LAB 

Teamsplit Semantics 

 Each subteam of T executes row_reduce() on 

its own 
 teamsplit(T) { 

   row_reduce(); 

 } 
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Outline 

 Language Extensions 

 Case Study: Sorting 

 Conclusions and Future Work 
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 Distributed sorting application using new 

hierarchical constructs 

 Three pieces: sequential, shared memory, and 

distributed 

 Sequential: quick sort reused from Java 1.4 library 

 Shared memory: sequential sort on each thread, 

merge results from each thread 

 Distributed memory: sample sort to distribute 

elements among nodes, shared memory sort on each 

node 

Sorting 
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 Divide elements equally among threads 

 

 

 No communication required due to shared memory 

 No copying required thanks to Titanium’s array views 

 Each thread calls sequential sort to process its 

elements 

Shared Memory Sort 

Thread 0 Thread 1 Thread 2 Thread 3 
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 Merge in parallel 

 

 

 

 

 

 

 Number of threads approximately halved in each 

iteration 

• Non-trivial to determine which threads perform merge when 

number of threads is not power of two 
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 Team hierarchy is binary tree 

 Trivial construction 

 

 

 

 

 

 Threads walk down to bottom 

of hierarchy, sort, then walk 

back up, merging along the way 

 See poster for code 

Shared Memory Hierarchy 
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static void divideTeam(Team t) { 

  if (t.size() > 1) { 

    t.splitTeam(2); 

    divideTeam(t.child(0)); 

    divideTeam(t.child(1)); 

  } 

} 
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 Control logic for sorting and merging 
static single void sortAndMerge(Team t) { 

  if (Ti.numProcs() == 1) { 

    allRes[myProc] = sequentialSort(myData); 

  } else { 

    teamsplit(t) { 

      sortAndMerge(Ti.currentTeam()); 

    } 

    Ti.barrier(); 

    if (Ti.thisProc() == 0) { 

      int otherProc = myProc + t.child(0).size(); 

      int[1d] myRes = allRes[myProc]; 

      int[1d] otherRes = allRes[otherProc]; 

      int[1d] newRes = target(t.depth(), myRes, otherRes); 

      allRes[myProc] = merge(myRes, otherRes, newRes); 

    } 

  } 

} 

 

SMP Sort and Merge Logic 
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 Phase 1: all threads sort 

SMP Sort and Merge Example 
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 Phase 1: all threads sort 

 Phase 2: t0 and t3 merge 

SMP Sort and Merge Example 
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 Phase 1: all threads sort 

 Phase 2: t0 and t3 merge 

 Phase 3: t0 and t3 merge 

SMP Sort and Merge Example 
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 Phase 1: all threads sort 

 Phase 2: t0 and t3 merge 

 Phase 3: t0 and t3 merge 

 Phase 4: t0 merges 

SMP Sort and Merge Example 

0, 1, 2, 3, 4, 5 

0, 1, 2 

0, 1 2 

0 1 

3, 4, 5 

3, 4 5 

3 4 

26 



BERKELEY PAR LAB 

 Hierarchical team constructs allow simple 

shared memory parallel sort implementation 

 Constructs facilitate expression of parallel recursive 

algorithms 

 Implementation details 

 ~90 lines of code (not including test code, sequential 

sort) 

 2 hours to implement (including test code) and test 

SMP Sort Summary 
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Distributed Sort 

 Existing sample sort written 12 years ago by Kar 

Ming Tang 

 Not very optimized, but it works (for small number of 

threads) 

 Algorithm details 

 At end, elements on thread i sorted and less than any 

elements on thread i+1 

 Elements initially distributed across threads randomly 

 Threads exchange elements to satisfy above property 

• Lots of communication involved 

 Elements then sorted locally 
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 For clusters of SMPs, use sampling and 

distribution between nodes, SMP sort on nodes 

 Requires fewer messages than pure sample sort, so 

should scale better on large number of nodes 

 Quick and dirty first version 

 Recycle old sampling and distribution code 

 Use one thread per node to perform sampling and 

distribution 

CLUMPS Sort v0.1 
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 Code for v0.1 
  Team team = Ti.defaultTeam(); 

  team.initialize(false); 

  Team oTeam = new Team(); 

  oTeam.splitTeamAll(team.myChildTeam().myRank(), 

                     team.myChildTeam().teamRank()); 

  oTeam.initialize(false); 

  partition(oTeam) { 

    { sampleSort(); } 

  } 

  teamsplit(team) { 

    keys = SMPSort.parallelSort(keys); 

  } 

 12 lines of code, 5 minutes to solution! 

CLUMPS Sort v0.1 Code 

30 



BERKELEY PAR LAB 

 And it works! 

CLUMPS Sort v0.1 Results 
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 New and improved version with more parallel 

distribution 

CLUMPS Sort v0.9a Results 
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 Sampling/distribution code composes cleanly 

with SMP sort – no changes to latter required 

 Team constructs designed to facilitate 

composition 

 Existing calls Ti.thisProc(), Ti.numProcs() 

return thread ID and count relative to current team 

 Collective operations (barrier, broadcast) execute 

over current team 

 Existing code executes as if its team is the entire 

world 

Code Composition 
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Outline 

 Language Extensions 

 Case Study: Sorting 

 Conclusions and Future Work 
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 Hierarchical language extensions simplify job of 

programmer 

 Can organize application around machine 

characteristics 

 Easier to specify algorithmic hierarchy 

 Seamless code composition 

 Better productivity, performance with team collectives 

• See poster for details 

 Language extensions are safe to use 

 Safety provided by lexical scoping and a 

straightforward extension of LCPC’09 work 

Conclusions 
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 Machine structure 

 Use hwloc library to determine machine structure 

 Better representation of machine structure and thread 

mapping 

 Can we help programmers in mapping application 

hierarchies to machine structures? 

 How to handle heterogeneity? 

 Extend compiler analyses to handle new 

language constructs 

Future Work 
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