
BERKELEY PAR LAB BERKELEY PAR LAB

Hierarchical Parallelism in a

Partitioned Address Space

Model

Amir Kamil and Katherine Yelick

Par Lab Retreat

June 2, 2011

BERKELEY PAR LAB

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview

Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o

s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

2 2

BERKELEY PAR LAB

Hierarchical Machines

 Parallel machines have hierarchical structure

 Expect this hierarchical trend to continue with

manycore
3

Dual Socket AMD
MagnyCours

Quad Socket Intel
Nehalem EX

BERKELEY PAR LAB

Application Hierarchy

 Applications can reduce communication costs by

adapting to machine hierarchy

 Locality-awareness: minimize communication

between distant threads, allow communication

between nearby threads

 Applications may also have inherent, algorithmic

hierarchy

 Recursive algorithms

 Composition of multiple algorithms

 Hierarchical division of data

4

BERKELEY PAR LAB

Locality is King

 Programming model must expose locality in

order to obtain good performance on large-scale

machines

 Possible approaches

 Add locality hints to multithreaded languages or

frameworks (e.g. TBB, OpenMP)

 Spawn tasks at specific locality domains (X10,

Chapel)

 Use static number of threads matched to specific

processing cores (SPMD)

• Most Par Lab efficiency layer codes use this approach

5

BERKELEY PAR LAB

Single Program, Multiple Data

 Single program, multiple data (SPMD): fixed set

of threads execute the same program image
public static void main(String[] args) {

 System.out.println("Hello from thread "

 + Ti.thisProc());

 Ti.barrier();

 if (Ti.thisProc() == 0)

 System.out.println("Done.");

}

6

Program Start

Barrier

Print Print Print Print Print Print Print Print

Program End

Print

BERKELEY PAR LAB

Partitioned Global Address Space

 Partitioned global address space (PGAS)

abstraction provides illusion of shared memory

on non-shared memory machines

 Pointers can reference local or remote data

 Location of data can be reflected in type system

 Runtime handles any required communication

double[1d] local srcl = new double[0:N-1];

double[1d] srcg = broadcast srcl from 0;

7

srcl

srcg

0

srcl

srcg

1

srcl

srcg

2

BERKELEY PAR LAB

Hierarchical Memory

 Previous work extended PGAS model to

hierarchical arrangement of memory spaces

(SAS’07)

 Pointers have varying span specifying how far

away the referenced object can be

 Reflect communication costs

8

B
C

D

A
1

2
3 4

span 1
(core local)

span 2
(processor local)

span 3
(node local)

span 4
(global)

BERKELEY PAR LAB

Hierarchical Computation

 Challenge: PGAS memory model expresses

locality, but hard to express hierarchical

computation in SPMD execution model

 Approach: Introduce programming constructs to

incorporate hierarchy in SPMD/PGAS model

 Address both machine and algorithmic hierarchy

 New constructs should be safe and easy to analyze

 Implementation done in Titanium language

 SPMD/PGAS dialect of Java

 Runtime layer based on GASNet

9

BERKELEY PAR LAB

Outline

 Language Extensions

 Case Study: Sorting

 Conclusions and Future Work

10

BERKELEY PAR LAB

Thread Teams

 Thread teams are basic units of cooperation

 Groups of threads that cooperatively execute code

 Collective operations over teams

 Teams should be hierarchical

 Match hierarchical nature of machines, algorithms

 Teams should be safe to use

 Should minimize new ways to program erroneously,

e.g. deadlocking

11

BERKELEY PAR LAB

Team Data Structure

 Threads comprise teams in tree-like structure

 Allow arbitrary hierarchies (e.g. unbalanced trees)

 First-class object to allow easy creation and

manipulation

 Library functions provided to create regular structures

(e.g. even division of threads, block-cyclic)

12

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11

1, 3, 2 9, 8 10, 11 0

BERKELEY PAR LAB

Machine Structure

 Need to provide mechanism for querying

machine structure and thread mapping at

runtime

 Right now, we provide a function for constructing a

team that distinguishes between threads that share

memory and those that don’t

13

Team T = Ti.defaultTeam();

4

5

6

7

0

1

2

3

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3 4, 5, 6, 7

BERKELEY PAR LAB

Language Constructs

 Thread teams may execute distinct tasks

partition(T) {

 { model_fluid(); }

 { model_muscles(); }

 { model_electrical(); }

}

 Threads may execute the same code on

different sets of data as part of different teams

teamsplit(T) {

 row_reduce();

}

 Lexical scope prevents some types of deadlock

 Constructs can be nested, but actual execution team

is determined by innermost construct
14

BERKELEY PAR LAB

Partition Semantics

 First subteam of T executes model_fluid(),

second executes model_muscles(), third

executes model_electrical()
 partition(T) {

 { model_fluid(); }

 { model_muscles(); }

 { model_electrical(); }

 }

15

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11

BERKELEY PAR LAB

Teamsplit Semantics

 Each subteam of T executes row_reduce() on

its own
 teamsplit(T) {

 row_reduce();

 }

16

=

0 1 2 3

4 5 6 7

8 9 10 11

T1

T2

T3

+

+

+

BERKELEY PAR LAB

Outline

 Language Extensions

 Case Study: Sorting

 Conclusions and Future Work

17

BERKELEY PAR LAB

 Distributed sorting application using new

hierarchical constructs

 Three pieces: sequential, shared memory, and

distributed

 Sequential: quick sort reused from Java 1.4 library

 Shared memory: sequential sort on each thread,

merge results from each thread

 Distributed memory: sample sort to distribute

elements among nodes, shared memory sort on each

node

Sorting

18

BERKELEY PAR LAB

 Divide elements equally among threads

 No communication required due to shared memory

 No copying required thanks to Titanium’s array views

 Each thread calls sequential sort to process its

elements

Shared Memory Sort

Thread 0 Thread 1 Thread 2 Thread 3

19

BERKELEY PAR LAB

 Merge in parallel

 Number of threads approximately halved in each

iteration

• Non-trivial to determine which threads perform merge when

number of threads is not power of two

Shared Memory Merge

Thread 0 Thread 2

Thread 0

20

BERKELEY PAR LAB

 Team hierarchy is binary tree

 Trivial construction

 Threads walk down to bottom

of hierarchy, sort, then walk

back up, merging along the way

 See poster for code

Shared Memory Hierarchy

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

static void divideTeam(Team t) {

 if (t.size() > 1) {

 t.splitTeam(2);

 divideTeam(t.child(0));

 divideTeam(t.child(1));

 }

}

21

BERKELEY PAR LAB

 Control logic for sorting and merging
static single void sortAndMerge(Team t) {

 if (Ti.numProcs() == 1) {

 allRes[myProc] = sequentialSort(myData);

 } else {

 teamsplit(t) {

 sortAndMerge(Ti.currentTeam());

 }

 Ti.barrier();

 if (Ti.thisProc() == 0) {

 int otherProc = myProc + t.child(0).size();

 int[1d] myRes = allRes[myProc];

 int[1d] otherRes = allRes[otherProc];

 int[1d] newRes = target(t.depth(), myRes, otherRes);

 allRes[myProc] = merge(myRes, otherRes, newRes);

 }

 }

}

SMP Sort and Merge Logic

22

BERKELEY PAR LAB

 Phase 1: all threads sort

SMP Sort and Merge Example

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

23

BERKELEY PAR LAB

 Phase 1: all threads sort

 Phase 2: t0 and t3 merge

SMP Sort and Merge Example

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

24

BERKELEY PAR LAB

 Phase 1: all threads sort

 Phase 2: t0 and t3 merge

 Phase 3: t0 and t3 merge

SMP Sort and Merge Example

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

25

BERKELEY PAR LAB

 Phase 1: all threads sort

 Phase 2: t0 and t3 merge

 Phase 3: t0 and t3 merge

 Phase 4: t0 merges

SMP Sort and Merge Example

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

26

BERKELEY PAR LAB

 Hierarchical team constructs allow simple

shared memory parallel sort implementation

 Constructs facilitate expression of parallel recursive

algorithms

 Implementation details

 ~90 lines of code (not including test code, sequential

sort)

 2 hours to implement (including test code) and test

SMP Sort Summary

27

BERKELEY PAR LAB

Distributed Sort

 Existing sample sort written 12 years ago by Kar

Ming Tang

 Not very optimized, but it works (for small number of

threads)

 Algorithm details

 At end, elements on thread i sorted and less than any

elements on thread i+1

 Elements initially distributed across threads randomly

 Threads exchange elements to satisfy above property

• Lots of communication involved

 Elements then sorted locally

28

BERKELEY PAR LAB

 For clusters of SMPs, use sampling and

distribution between nodes, SMP sort on nodes

 Requires fewer messages than pure sample sort, so

should scale better on large number of nodes

 Quick and dirty first version

 Recycle old sampling and distribution code

 Use one thread per node to perform sampling and

distribution

CLUMPS Sort v0.1

29

BERKELEY PAR LAB

 Code for v0.1
 Team team = Ti.defaultTeam();

 team.initialize(false);

 Team oTeam = new Team();

 oTeam.splitTeamAll(team.myChildTeam().myRank(),

 team.myChildTeam().teamRank());

 oTeam.initialize(false);

 partition(oTeam) {

 { sampleSort(); }

 }

 teamsplit(team) {

 keys = SMPSort.parallelSort(keys);

 }

 12 lines of code, 5 minutes to solution!

CLUMPS Sort v0.1 Code

30

BERKELEY PAR LAB

 And it works!

CLUMPS Sort v0.1 Results

0

2

4

6

8

10

12

14

16

18

1 2 4 8

Ti
m

e
 (

s)

Nodes (4 procs/node)

Sample Sort v0.1 (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/node)

pure (sample time) pure (sort time)

mixed (sample time) mixed (sort time)

31

BERKELEY PAR LAB

 New and improved version with more parallel

distribution

CLUMPS Sort v0.9a Results

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32 64 128 256

Ti
m

e
 (

s)

Nodes (4 procs/node)

Sample Sort v0.9a (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/proc)

pure (sample time) pure (sort time)

mixed (sample time) mixed (sort time)

32

BERKELEY PAR LAB

 Sampling/distribution code composes cleanly

with SMP sort – no changes to latter required

 Team constructs designed to facilitate

composition

 Existing calls Ti.thisProc(), Ti.numProcs()

return thread ID and count relative to current team

 Collective operations (barrier, broadcast) execute

over current team

 Existing code executes as if its team is the entire

world

Code Composition

33

BERKELEY PAR LAB

Outline

 Language Extensions

 Case Study: Sorting

 Conclusions and Future Work

34

BERKELEY PAR LAB

 Hierarchical language extensions simplify job of

programmer

 Can organize application around machine

characteristics

 Easier to specify algorithmic hierarchy

 Seamless code composition

 Better productivity, performance with team collectives

• See poster for details

 Language extensions are safe to use

 Safety provided by lexical scoping and a

straightforward extension of LCPC’09 work

Conclusions

35

BERKELEY PAR LAB

 Machine structure

 Use hwloc library to determine machine structure

 Better representation of machine structure and thread

mapping

 Can we help programmers in mapping application

hierarchies to machine structures?

 How to handle heterogeneity?

 Extend compiler analyses to handle new

language constructs

Future Work

36

BERKELEY PAR LAB

This slide intentionally left blank.

37

