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Hierarchical Machines 

 Parallel machines have hierarchical structure 

 

 

 

 

 

 

 

 

 Expect this hierarchical trend to continue with 
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Application Hierarchy 

 Applications can reduce communication costs by 

adapting to machine hierarchy 

 Locality-awareness: minimize communication 

between distant threads, allow communication 

between nearby threads  

 Applications may also have inherent, algorithmic 

hierarchy 

 Recursive algorithms 

 Composition of multiple algorithms 

 Hierarchical division of data 
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Locality is King 

 Programming model must expose locality in 

order to obtain good performance on large-scale 

machines 

 Possible approaches 

 Add locality hints to multithreaded languages or 

frameworks (e.g. TBB, OpenMP) 

 Spawn tasks at specific locality domains (X10, 

Chapel) 

 Use static number of threads matched to specific 

processing cores (SPMD) 

• Most Par Lab efficiency layer codes use this approach 

5 



BERKELEY PAR LAB 

Single Program, Multiple Data 

 Single program, multiple data (SPMD): fixed set 

of threads execute the same program image 
public static void main(String[] args) { 

  System.out.println("Hello from thread "  

                     + Ti.thisProc()); 

  Ti.barrier(); 

  if (Ti.thisProc() == 0) 

    System.out.println("Done."); 

} 
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Partitioned Global Address Space 

 Partitioned global address space (PGAS) 

abstraction provides illusion of shared memory 

on non-shared memory machines 

 Pointers can reference local or remote data 

 Location of data can be reflected in type system 

 Runtime handles any required communication 

double[1d] local srcl = new double[0:N-1]; 

double[1d] srcg = broadcast srcl from 0; 
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Hierarchical Memory 

 Previous work extended PGAS model to 

hierarchical arrangement of memory spaces 

(SAS’07) 

 Pointers have varying span specifying how far 

away the referenced object can be 

 Reflect communication costs 
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Hierarchical Computation 

 Challenge: PGAS memory model expresses 

locality, but hard to express hierarchical 

computation in SPMD execution model 

 Approach: Introduce programming constructs to 

incorporate hierarchy in SPMD/PGAS model 

 Address both machine and algorithmic hierarchy 

 New constructs should be safe and easy to analyze 

 Implementation done in Titanium language 

 SPMD/PGAS dialect of Java 

 Runtime layer based on GASNet 
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Outline 

 Language Extensions 

 Case Study: Sorting 

 Conclusions and Future Work 
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Thread Teams 

 Thread teams are basic units of cooperation 

 Groups of threads that cooperatively execute code 

 Collective operations over teams 

 Teams should be hierarchical 

 Match hierarchical nature of machines, algorithms 

 Teams should be safe to use 

 Should minimize new ways to program erroneously, 

e.g. deadlocking 
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Team Data Structure 

 Threads comprise teams in tree-like structure 

 Allow arbitrary hierarchies (e.g. unbalanced trees) 

 First-class object to allow easy creation and 

manipulation 

 Library functions provided to create regular structures 

(e.g. even division of threads, block-cyclic) 
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Machine Structure 

 Need to provide mechanism for querying 

machine structure and thread mapping at 

runtime 

 Right now, we provide a function for constructing a 

team that distinguishes between threads that share 

memory and those that don’t 
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Language Constructs 

 Thread teams may execute distinct tasks 

partition(T) { 

  { model_fluid(); } 

  { model_muscles(); } 

  { model_electrical(); } 

} 

 Threads may execute the same code on 

different sets of data as part of different teams 

teamsplit(T) { 

  row_reduce(); 

} 

 Lexical scope prevents some types of deadlock 

 Constructs can be nested, but actual execution team 

is determined by innermost construct 
14 
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Partition Semantics 

 First subteam of T executes model_fluid(), 

second executes model_muscles(), third 

executes model_electrical() 
 partition(T) { 

   { model_fluid(); } 

   { model_muscles(); } 

   { model_electrical(); } 

 } 
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Teamsplit Semantics 

 Each subteam of T executes row_reduce() on 

its own 
 teamsplit(T) { 

   row_reduce(); 

 } 
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Outline 

 Language Extensions 

 Case Study: Sorting 

 Conclusions and Future Work 
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 Distributed sorting application using new 

hierarchical constructs 

 Three pieces: sequential, shared memory, and 

distributed 

 Sequential: quick sort reused from Java 1.4 library 

 Shared memory: sequential sort on each thread, 

merge results from each thread 

 Distributed memory: sample sort to distribute 

elements among nodes, shared memory sort on each 

node 

Sorting 
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 Divide elements equally among threads 

 

 

 No communication required due to shared memory 

 No copying required thanks to Titanium’s array views 

 Each thread calls sequential sort to process its 

elements 

Shared Memory Sort 

Thread 0 Thread 1 Thread 2 Thread 3 
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 Merge in parallel 

 

 

 

 

 

 

 Number of threads approximately halved in each 

iteration 

• Non-trivial to determine which threads perform merge when 

number of threads is not power of two 
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 Team hierarchy is binary tree 

 Trivial construction 

 

 

 

 

 

 Threads walk down to bottom 

of hierarchy, sort, then walk 

back up, merging along the way 

 See poster for code 

Shared Memory Hierarchy 
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static void divideTeam(Team t) { 

  if (t.size() > 1) { 

    t.splitTeam(2); 

    divideTeam(t.child(0)); 

    divideTeam(t.child(1)); 

  } 

} 
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 Control logic for sorting and merging 
static single void sortAndMerge(Team t) { 

  if (Ti.numProcs() == 1) { 

    allRes[myProc] = sequentialSort(myData); 

  } else { 

    teamsplit(t) { 

      sortAndMerge(Ti.currentTeam()); 

    } 

    Ti.barrier(); 

    if (Ti.thisProc() == 0) { 

      int otherProc = myProc + t.child(0).size(); 

      int[1d] myRes = allRes[myProc]; 

      int[1d] otherRes = allRes[otherProc]; 

      int[1d] newRes = target(t.depth(), myRes, otherRes); 

      allRes[myProc] = merge(myRes, otherRes, newRes); 

    } 

  } 

} 

 

SMP Sort and Merge Logic 
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 Phase 1: all threads sort 

SMP Sort and Merge Example 
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 Phase 1: all threads sort 

 Phase 2: t0 and t3 merge 

SMP Sort and Merge Example 
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 Phase 1: all threads sort 

 Phase 2: t0 and t3 merge 

 Phase 3: t0 and t3 merge 

SMP Sort and Merge Example 
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 Phase 1: all threads sort 

 Phase 2: t0 and t3 merge 

 Phase 3: t0 and t3 merge 

 Phase 4: t0 merges 

SMP Sort and Merge Example 
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 Hierarchical team constructs allow simple 

shared memory parallel sort implementation 

 Constructs facilitate expression of parallel recursive 

algorithms 

 Implementation details 

 ~90 lines of code (not including test code, sequential 

sort) 

 2 hours to implement (including test code) and test 

SMP Sort Summary 

27 



BERKELEY PAR LAB 

Distributed Sort 

 Existing sample sort written 12 years ago by Kar 

Ming Tang 

 Not very optimized, but it works (for small number of 

threads) 

 Algorithm details 

 At end, elements on thread i sorted and less than any 

elements on thread i+1 

 Elements initially distributed across threads randomly 

 Threads exchange elements to satisfy above property 

• Lots of communication involved 

 Elements then sorted locally 
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 For clusters of SMPs, use sampling and 

distribution between nodes, SMP sort on nodes 

 Requires fewer messages than pure sample sort, so 

should scale better on large number of nodes 

 Quick and dirty first version 

 Recycle old sampling and distribution code 

 Use one thread per node to perform sampling and 

distribution 

CLUMPS Sort v0.1 
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 Code for v0.1 
  Team team = Ti.defaultTeam(); 

  team.initialize(false); 

  Team oTeam = new Team(); 

  oTeam.splitTeamAll(team.myChildTeam().myRank(), 

                     team.myChildTeam().teamRank()); 

  oTeam.initialize(false); 

  partition(oTeam) { 

    { sampleSort(); } 

  } 

  teamsplit(team) { 

    keys = SMPSort.parallelSort(keys); 

  } 

 12 lines of code, 5 minutes to solution! 

CLUMPS Sort v0.1 Code 
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 And it works! 

CLUMPS Sort v0.1 Results 
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 New and improved version with more parallel 

distribution 

CLUMPS Sort v0.9a Results 
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 Sampling/distribution code composes cleanly 

with SMP sort – no changes to latter required 

 Team constructs designed to facilitate 

composition 

 Existing calls Ti.thisProc(), Ti.numProcs() 

return thread ID and count relative to current team 

 Collective operations (barrier, broadcast) execute 

over current team 

 Existing code executes as if its team is the entire 

world 

Code Composition 
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Outline 

 Language Extensions 

 Case Study: Sorting 

 Conclusions and Future Work 
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 Hierarchical language extensions simplify job of 

programmer 

 Can organize application around machine 

characteristics 

 Easier to specify algorithmic hierarchy 

 Seamless code composition 

 Better productivity, performance with team collectives 

• See poster for details 

 Language extensions are safe to use 

 Safety provided by lexical scoping and a 

straightforward extension of LCPC’09 work 

Conclusions 
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 Machine structure 

 Use hwloc library to determine machine structure 

 Better representation of machine structure and thread 

mapping 

 Can we help programmers in mapping application 

hierarchies to machine structures? 

 How to handle heterogeneity? 

 Extend compiler analyses to handle new 

language constructs 

Future Work 
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