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Hierarchical Machines P

BERKELEY PAR LAB

< Parallel machines have hierarchical structure

Dual Socket AMD
MagnyCours

Quad Socket Intel
Nehalem EX

< Expect this hierarchical trend to continue with
manycore



Application Hierarchy

< Applications can reduce communication costs by
adapting to machine hierarchy

= |ocality-awareness: minimize communication
between distant threads, allow communication
between nearby threads

< Applications may also have inherent, algorithmic
hierarchy
= Recursive algorithms
= Composition of multiple algorithms
» Hierarchical division of data



Locality is King

< Programming model must expose locality In

order to obtain good performance on large-scale
machines

< Possible approaches

» Add locality hints to multithreaded languages or
frameworks (e.g. TBB, OpenMP)

= Spawn tasks at specific locality domains (X10,
Chapel)

= Use static number of threads matched to specific
processing cores (SPMD)

« Most Par Lab efficiency layer codes use this approach



Single Program, Multiple Data s
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< Single program, multiple data (SPMD): fixed set

of threads execute the same program image

public static wvoid (String[] args) {
System.out.println("Hello from thread "
+ Ti.thisProc())

Ti.barrier () ;
if (Ti.thisProc() == 0)
System.out.println("Done.") ;

ram Start

Print §§ Print Print Print | Print

Barrier

Program End 6



Partitioned Global Address Space

< Partitioned global address space (PGAS)
abstraction provides illusion of shared memory
on non-shared memory machines

< Pointers can reference local or remote data
* Location of data can be reflected in type system

= Runtime handles any required communication
double[1ld] local srcl = new double[0:N-1];

double[1ld] srcg = broadcast srcl from O;
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Hierarchical Memory

% Previous work extended PGAS model to

hierarchical arrangement of memory spaces

(SAS'07)

< Pointers have varying span specifying how far

away the referenced object can be

= Reflect communication costs
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Hierarchical Computation

% Cha
loca
com

lenge: PGAS memory model expresses
ity, but hard to express hierarchical

outation In SPMD execution model

< Approach: Introduce programming constructs to
Incorporate hierarchy in SPMD/PGAS model

» Address both machine and algorithmic hierarchy

= New constructs should be safe and easy to analyze
< Implementation done in Titanium language

= SPMD/PGAS dialect of Java

= Runtime layer based on GASNet



< Language Extensions
< Case Study: Sorting
< Conclusions and Future Work
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Thread Teams

< Thread teams are basic units of cooperation
» Groups of threads that cooperatively execute code
= Collective operations over teams

< Teams should be hierarchical
= Match hierarchical nature of machines, algorithms

< Teams should be safe to use

* Should minimize new ways to program erroneously,
e.g. deadlocking
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Team Data Structure

< Threads comprise teams In tree-like structure
= Allow arbitrary hierarchies (e.g. unbalanced trees)

< First-class object to allow easy creation and
manipulation

= Library functions provided to create regular structures
(e.g. even division of threads, block-cyclic)
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Machine Structure

<+ Need to provide mechanism for querying
machine structure and thread mapping at
runtime

» Right now, we provide a function for constructing a
team that distinguishes between threads that share
memory and those that don't

Team T = Ti.defaultTeam() ;

0,1,23,4,5,6,7

N

0,123 4,5,6,7
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Language Constructs

< Thread teams may execute distinct tasks
partition(T) {
{ model fluid(); }
{ model muscles(); }
{ model electrical(); }

}

< Threads may execute the same code on
different sets of data as part of different teams
teamsplit (T) {
row_reduce() ;

}

< Lexical scope prevents some types of deadlock

= Constructs can be nested, but actual execution team
IS determined by innermost construct

14



Partition Semantics

< First subteam of T executes model fluid(),
second executes model muscles (), third
executes model electrical ()
partition(T) { -

odel fluid()) }

{model muscles () > }

»

{ @lectrical ()

0123,4,5,6,7,8,9,10, 11
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Teamsplit Semantics

< Each subteam of T executes row reduce () on

ItS own
teamsplit (T) {
row reduce() ;

}
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< Language Extensions
< Case Study: Sorting
< Conclusions and Future Work
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< Distributed sorting application using new
hierarchical constructs

< Three pieces: sequential, shared memory, and
distributed
= Sequential: quick sort reused from Java 1.4 library

» Shared memory: sequential sort on each thread,
merge results from each thread

= Distributed memory: sample sort to distribute
elements among nodes, shared memory sort on each
node

18



Shared Memory Sort

< Divide elements equal

y among threads

Thread O

Thread 2 Thread 3

= No communication required due to shared memory
= No copying required thanks to Titanium’s array views

< Each thread calls sequential sort to process its

elements
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Shared Memory Merge

<+ Merge In parallel

\Thread 0 \Thread 2/

Thread O

= Number of threads approximately halved in each
iteration

« Non-trivial to determine which threads perform merge when
number of threads is not power of two



Shared Memory Hierarchy

< Team hierarchy Is binary tree
< Trivial construction

static void (Team t) {
if (t.size() > 1) {
t.splitTeam(2) ;
divideTeam(t.child (0)) ;

0,1,23,4,5

N

0,1,2 3,4,5

divideTeam(t.child (1)) ;
}

0,1

}

< Threads walk down to bottom

0

of hierarchy, sort, then walk
back up, merging along the way
= See poster for code
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SMP Sort and Merge Logic

< Control logic for sorting and merging

static single void (Team t) {
if (Ti.numProcs() == 1) {

}

allRes[myProc] = sequentialSort (myData) ;

else {

teamsplit (t) {
sortAndMerge (Ti.currentTeam()) ;

}

Ti.barrier();

if (Ti.thisProc() == 0) {
int otherProc = myProc + t.child(0) .size()
int[1ld] myRes = allRes|[myProc];
int[1d] otherRes = allRes[otherProc];
int[1ld] newRes =
allRes[myProc] = merge (myRes, otherRes, newRes) ;

target (t.depth() , myRes, otherRes);
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SMP Sort and Merge Example

% Phase 1: all threads sort
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SMP Sort and Merge Example

< Phase 1: all threads sort
< Phase 2: t0 and t3 merge

0,1,23,4,5
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SMP Sort and Merge Example

o P

o P

o P

nase 1: all threads sort
nase 2: t0 and t3 merge

nase 3: t0 and t3 merge
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SMP Sort and Merge Example

v U U U

nase 1: all threads sort
nase 2: t0 and t3 merge
nase 3: t0 and t3 merge

nase 4: t0O merges

-
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SMP Sort Summary

< Hierarchical team constructs allow simple
shared memory parallel sort implementation

= Constructs facilitate expression of parallel recursive
algorithms

< Implementation detalls

= ~90 lines of code (not including test code, sequential
sort)

= 2 hours to implement (including test code) and test
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Distributed Sort

< EXxisting sample sort written 12 years ago by Kar
Ming Tang

* Not very optimized, but it works (for small number of
threads)

< Algorithm detaills

= At end, elements on thread i sorted and less than any
elements on thread i+1

= Elements initially distributed across threads randomly

* Threads exchange elements to satisfy above property
 Lots of communication involved

* Elements then sorted locally

28



CLUMPS Sort v0.1

< For clusters of SMPs, use sampling and
distribution between nodes, SMP sort on nodes

» Requires fewer messages than pure sample sort, so
should scale better on large number of nodes

< Quick and dirty first version
» Recycle old sampling and distribution code

= Use one thread per node to perform sampling and
distribution

29



CLUMPS Sort v0.1 Code

% Code for v0.1

Team team = Ti.defaultTeam() ;
team.initialize (false);
Team oTeam = new Team() ;
oTeam.splitTeamAll (team.myChildTeam() .myRank () ,
team.myChildTeam() . teamRank () ) ;
oTeam.initialize (false) ;
partition (oTeam) {
{ sampleSort(); }
}
teamsplit (team) {
keys = SMPSort.parallelSort (keys) ;

}
< 12 lines of code, 5 minutes to solution!

30



CLUMPS Sort v0.1 Results = &

BERKELEY PAR LAB

< And it works!

Sample Sort v0.1 (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/node)

18

M pure (sample time) ™ pure (sort time)

16 mixed (sample time) M mixed (sort time)

14

1 2 4 8
Nodes (4 procs/node)
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CLUMPS Sort v0.9a Results =7 &
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<+ New and improved version with more parallel

distribution
Sample Sort v0.9a (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/proc)

18
M pure (sample time) ™ pure (sort time)
16 mixed (sample time) ® mixed (sort time)
14
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Code Composition

< Sampling/distribution code composes cleanly
with SMP sort — no changes to latter required

< Team constructs designed to faclilitate
composition
= Existing calls Ti.thisProc (), Ti.numProcs ()
return thread ID and count relative to current team

= Collective operations (barrier, broadcast) execute
over current team

< EXisting code executes as If its team Is the entire
world

33



< Language Extensions
< Case Study: Sorting
% Conclusions and Future Work
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Conclusions

< Hierarchical language extensions simplify job of
programmer

= Can organize application around machine
characteristics

» Easier to specify algorithmic hierarchy
= Seamless code composition

= Better productivity, performance with team collectives
« See poster for details

< Language extensions are safe to use

= Safety provided by lexical scoping and a
straightforward extension of LCPC’09 work
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Future Work

< Machine structure
= Use hwloc library to determine machine structure
= Better representation of machine structure and thread
mapping
= Can we help programmers in mapping application
hierarchies to machine structures?

= How to handle heterogeneity?

<+ Extend compiler analyses to handle new
language constructs
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