
Hierarchical Machines and Algorithms

BERKELEY PAR LAB

Hierarchical Parallelism in a

Partitioned Address Space Model
Amir Kamil and Katherine Yelick

Hierarchical Thread Teams

Team Usage

Conjugate Gradient Library

Parallel Sorting Library

• Parallel sorting application using new hierarchical

constructs

• SMP sort uses team constructs to merge results

from different threads in parallel

• Thread teams may execute different code

void divideTeam(Team t) {

 if (t.size() > 1) {

 t.splitTeam(2);

 divideTeam(t.child(0));

 divideTeam(t.child(1));

 }

}

single void sortAndMerge(Team t) {

 if (Ti.numProcs() == 1) {

 sequentialSort(myData);

 } else {

 teamsplit(t) {

 sortAndMerge(Ti.currentTeam());

 }

 Ti.barrier();

 if (Ti.thisProc() == 0) {

 int otherProc = myProc + t.child(0).size();

 merge(data(myProc), data(otherProc));

 }

 }

}

Phase 1: all threads sort

Phase 2: t0 and t3 merge

Phase 3: t0 and t3 merge

Phase 4: t0 merges

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

• Initial distributed sort uses existing, unoptimized

sample sort code to distribute elements among

nodes, SMP sort to sort on each node
Team t1 = Ti.defaultTeam();

team.initialize(false);

Team t2 = new Team();

t2.splitTeamAll(t1.myChildTeam().myRank(),

 t2.myChildTeam().teamRank());

t2.initialize(false);

partition(t2) {

 { sampleSort(); }

}

teamsplit(t1) {

 keys = SMPSort.parallelSort(keys);

}

• 12 lines of code,

5 minutes to

solution

• However, doesn’t

scale beyond 8

nodes

• New version uses all threads to distribute

elements among nodes

• Still uses SMP sort to sort on each node, with no

changes required to SMP code

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32 64 128 256

Ti
m

e
 (

s)

Nodes (4 procs/node)

Sample Sort v0.9a (Cray XT4)
(10,000,000 elements/proc, 10,000 samples/proc)

pure (sample time) pure (sort time)

mixed (sample time) mixed (sort time)

• NAS conjugate gradient application originally

written by Kaushik Datta

• Iterative solver with sparse matrix-vector multiply

in each iteration

• Matrix divided among threads by row and column

• Result of one iteration is input of next

• Reduction across rows, broadcast along columns

• Original code had hand-written collectives; we use

built-in team collectives instead

= x

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

+ teamsplit(rowTeam) {

 Reduce.add(mtmp, myResults0, rpivot);

}

if (reduceCopy)

 myOut.copy(allResults[reduceSource]);

teamsplit(columnTeam) {

 myOut.vbroadcast(cpivot);

}

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128

Ti
m

e
 (

s)

Processors (max 16 procs/node)

NAS CG SPMV Communication Time (Cray XE6)
(Class B)

old teams

partition(T) {

 { model_fluid(); }

 { model_muscles(); }

 { model_electrical(); }

}

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11

• Threads may execute same code as part of

different teams of cooperating threads

teamsplit(T) {

 row_reduce();

}

=

0 1 2 3

4 5 6 7

8 9 10 11

R1

R2

R3

+

+

+

• Collective operations

operate over current

team

• Parallel machines are hierarchical

• Algorithms also may be hierarchical

• Examples: merge sort, Barnes-Hut particle simulation

• Efficiency layer language must expose locality to

users while also allowing general parallelism

• Our approach: start with parallelism model that has

locality, add more general parallelism constructs

• Single-Program, Multiple-Data parallelism model

• Fixed number of threads, collective operations for

synchronization, communication

• Partitioned Global Address Space memory model

• Threads can access data anywhere, locality encoded in

pointer type

B
C

D

A
1

2
3 4

span 1
(core local)

span 2
(processor local)

span 3
(node local)

span 4
(global)

Exchange

Program Start

Barrier

• Thread teams are basic units of cooperation

• Groups of threads that cooperatively execute code

• Collective operations over teams

• Teams should be hierarchical

• Match hierarchical nature of machines, algorithms

• Team data structure

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11

1, 3, 2 9, 8 10, 11 0

• Library functions provided to facilitate team

creation

• Need to provide ability to query machine structure

• At the moment, we provide a function to create a team

hierarchy that loosely matches the machine

• Implementation in Titanium language, using

GASNet runtime

