s

BERKELEY PAR LAB

Asp Specializers

Shoaib Kamil
Armando Fox, Katherine Yelick,
Derrick Coetzee, Jeffrey Morlan,
Young Kim, David Johnson & many more
Par Lab/UPCRC Retreat, Summer 2011

Outline

<+ Review of SEJITS & Asp

< Asp Status & Highlights

<+ SEJITS & Separation of Concerns
< Specializer Structure

<+ Recent Results

< Getting Involved

SEJITS Review

Selective

-PY

Embedded "y

| cCci1liT o |

OS/HW

PLL Interp

Asp Review

< Asp Is a SEJITS infrastructure for Python

< Enables building specializers for Python

» Specializers = domain-specific code translators
+ autotuners

= Specializers expose an understandable,
Pythonic interface for domain scientists

» Behind the scenes, specializers use Abstract
Syntax Tree manipulation and code templates to
do translation

Status and Highlights

< Infrastructure now enables building non-
trivial specializers

< 3 specializers mature enough to have
performance results, 2 integrated in driving
apps
= See my poster for Stencill

= Jeffrey Morlan’s poster for Communication-
Avoiding Matrix Powers

» Katya & Henry’s poster (and talk) for Gaussian
Mixture Modeling

Status and Highlights

< Begun applying ML technigues to recorded
performance of auto-tuned/specialized code

» Orianna Demasi’'s poster on Decision Trees for
Stencil Tuning
<+ Developer Preview planned to coincide with
SciPy 2011 Conference in July

= We will be giving a talk about Asp at the
conference

Asp:. Who Does What?

App author Specializer author SEJITS 3'd party
(PLL) (ELL) team library
Application Specializer Asp core e.g. MKL
Python

Kernel / AST

Domain-Specific e—> Utilities

Transforms

Target Asp - Compiled
Ang > Module libraries
Kernel
call &

Input data

Results €

Specializer Structure

<+ Templates vs. Abstract Syntax Tree
manipulation
» Templates useful for many parts of computation

= Some specializers only use templates: can build
without knowing AST manipulation

< AST Manipulation for Code Transformation
& Translation
= Use full capabilities of Asp
» | et specializer users write code

Stencil Example

import stencil kernel as sk

class LaplacianKernel(sk.StencilKernel):
def kernel(self, in_grid, out grid):
for x in out _grid.interior points():
for y in in_grid.neighbors(x, 1):
out _grid[x] = out _grid[x] + (1/6) * in_grid[y]

LaplacianKernel().kernel(in_grid, out_grid)

Specializer Structure: First Run

~

Machine
Parameters def kernel(..)..
Run Pure ffalse [Check } //[Python J -
Python . e AST D o
/’,,, QI-IJ-I
void kernel vi1() . S
void kernel v2() Generate } [Tran:r:zrsrgztlon} >
Variants <
Q
=
=1

) S [Low-Level }
Ink \\\. COde

Dynamic

Domain Programmer
Load

&
[Complle/LJ
5=

10

Specializer Structure: Run

achine
Parameters

Run Pure

in_grid, out_grid

Previous
Runs DB

Check f() |Specializer-
supplied

Python
Or
Re-Specialize

If none (Pick J
Variant

-

(Record J

R“Tme Domain Programmer

Return Result

11

AST-based Specializers:

4 Phase Transformation

Python AST => domain-specific AST
Optimize domain-specific AST
Domain-specific AST => platform AST
Platform AST => code generation

A

<+ All steps use tree visitor pattern

<+ Write "handlers” that are called when a
node type Is encountered

<+ See Derrick Coetzee’s poster for a walkthru
example

12

Transformation with Domain %

Knowledge

Generic => Domain-Specific

for x in
out_grid.interior_points

Stencillnterior
out_grid, x

for y in in_grid.neighbors

interior_point StencilNeighbor

in_grid, y, 1

neighbors(x,1) : =

P

out_grid[x] + out_grid[x] +
out_grid[x] =
out_grid[x] + in_grid[y]
out_grid[x] in_grid[y] t_grid[x] in_grid[y]
out_grid[x In_gridly

13

Recent Results: Matrix Powers 7 &=

<+ Now have a Communication-Avoiding CG
using our CA Matrix Powers kernel

= Matrix Powers Is auto-tuned

Time for CG Solve, per iteration

M SCi
12 by
w specialized
10 - time inAkx—
=
8
()]
£ 0
= 4 -
2 _
O _

512by512 cfd2 cant

14

Recent Results: Stencil

» Testbed for AST transformations
» Supports many stencils already
» Optimizations, auto-tuning being added
= Only register blocking enabled, already >65% of peak
< Believe can obtain >90% of peak

3D Laplacian Fraction of Peak Mem
0.7 BW

m 0.6 —— ®mopenmp |

O | mcilk+

Threads 15

Get Involved

<+ We want your feedback
= Many open questions

<+ Goal: Make it easy to start development
» Quick development VM avalilable

< Source
= http://github.com/shoaibkamil/asp.qgit
= Wiki: http://github.com/shoaibkamil/asp/wiki

L. = D . Y A

16

http://github.com/shoaibkamil/asp.git

