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Asp Review

< Asp Is a SEJITS infrastructure for Python

< Enables building specializers for Python

» Specializers = domain-specific code translators
+ autotuners

= Specializers expose an understandable,
Pythonic interface for domain scientists

» Behind the scenes, specializers use Abstract
Syntax Tree manipulation and code templates to
do translation



Status and Highlights

< Infrastructure now enables building non-
trivial specializers

< 3 specializers mature enough to have
performance results, 2 integrated in driving
apps
= See my poster for Stencill

= Jeffrey Morlan’s poster for Communication-
Avoiding Matrix Powers

» Katya & Henry’s poster (and talk) for Gaussian
Mixture Modeling



Status and Highlights

< Begun applying ML technigues to recorded
performance of auto-tuned/specialized code

» Orianna Demasi’'s poster on Decision Trees for
Stencil Tuning
<+ Developer Preview planned to coincide with
SciPy 2011 Conference in July

= We will be giving a talk about Asp at the
conference



Asp:. Who Does What?
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Specializer Structure

<+ Templates vs. Abstract Syntax Tree
manipulation
» Templates useful for many parts of computation

= Some specializers only use templates: can build
without knowing AST manipulation

< AST Manipulation for Code Transformation
& Translation
= Use full capabilities of Asp
» | et specializer users write code



Stencil Example

import stencil kernel as sk

class LaplacianKernel(sk.StencilKernel):
def kernel(self, in_grid, out grid):
for x in out _grid.interior points():
for y in in_grid.neighbors(x, 1):
out _grid[x] = out _grid[x] + (1/6) * in_grid[y]

LaplacianKernel().kernel(in_grid, out_grid)



Specializer Structure: First Run
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Specializer Structure: Run

achine
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AST-based Specializers:

4 Phase Transformation

Python AST => domain-specific AST
Optimize domain-specific AST
Domain-specific AST => platform AST
Platform AST => code generation

A

<+ All steps use tree visitor pattern

<+ Write "handlers” that are called when a
node type Is encountered

<+ See Derrick Coetzee’s poster for a walkthru
example
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Transformation with Domain %

Knowledge

Generic => Domain-Specific

for x in
out_grid.interior_points

Stencillnterior
out_grid, x

for y in in_grid.neighbors

interior_point StencilNeighbor

in_grid, y, 1

neighbors(x,1) : =

P

out_grid[x] + out_grid[x] +
out_grid[x] =
out_grid[x] + in_grid[y]
out_grid[x] in_grid[y] t_grid[x] in_grid[y]
out_grid[x In_gridly
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Recent Results: Matrix Powers 7 &=

<+ Now have a Communication-Avoiding CG
using our CA Matrix Powers kernel

= Matrix Powers Is auto-tuned

Time for CG Solve, per iteration
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Recent Results: Stencil

» Testbed for AST transformations
» Supports many stencils already
» Optimizations, auto-tuning being added
= Only register blocking enabled, already >65% of peak
< Believe can obtain >90% of peak
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Get Involved

<+ We want your feedback
= Many open questions

<+ Goal: Make it easy to start development
» Quick development VM avalilable

< Source
= http://github.com/shoaibkamil/asp.qgit
= Wiki: http://github.com/shoaibkamil/asp/wiki
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