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Talk outline 

   Developing efficient algorithms!
  Strategy: avoiding communication!
  Dense linear algebra!

•  Heterogeneous comm. complexity!
•  Eigenvalue problems!
•  2.5D algorithms!
•  Fast matmul comm. complexity!
•  CA-pivoting (ask me about it)!

  Sparse linear algebra!
•  CA-Krylov methods!
•  New matrix powers kernel!

   Automatic performance tuning!
  OSKI (Optimized Sparse Kernel Interface)!
  Future development!
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Communication =!
  Data movement and synchronization!
  The dominant performance bottleneck in numerical codes!

Comm. lower bounds for direct linear algebra:!
  #words moved    = Ω(#flops / M1/2

 )!
  #messages sent =  Ω(#flops / M3/2

 )                                                     !
  Standard algorithms do not attain these bounds!!

We develop:!
  Direct algorithms that attain these bounds 

(communication-optimal)!
  Iterative algorithms that solve problems with 

optimal communication.!
!Speedups on todayʼs, future hardware!

Avoiding communication 
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M = fast/local  
memory size 
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Heterogeneous comm. complexity 

How best to reduce communication costs 
on heterogeneous machine?!

  New theoretical results: !
  Model algorithm costs as linear program!
  Solution gives you optimal partition of flops!

  New theory  FASTER ALGORITHMS!
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Heterogeneous memory model!
(Different speeds, bandwidths, latencies) !

 (dense) matrix-vector multiply!

(dense) matrix-matrix multiply!

(SEE POSTER) 
Gearhart, Ballard 
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Eigenvalue problems and SVD 

Applications:!
  Image processing (M. Andersonʼs talk yesterday)!
Previously:!

  Presented three new algorithms at Winter 2010 retreat!

  Solve eigenvalue and singular value problems with less communication!
New algorithm      for successive band-reduction!

  Minimizes bandwidth and latency costs in serial!
  Parallel SBR and implementations in development!
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dense banded tridiagonal 



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 
2.5D algorithms I 
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2D processor array  

Special case: c = P1/3 copies 
Cube of processors: P1/3 x P1/3 x P1/3 

P1/2 

P1/2 

1 
1 

1 copy of data 

1 ≤ c ≤ P1/3 copies of data, 
one per `plane’ in the k direction 

2.5D processor array 
dimensions: (P/c)1/2 x (P/c)1/2 x c 
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Do you have extra memory available? 
In direct linear algebra, we can  
use it to avoid communication  
by storing 1 ≤ c ≤ P1/3 redundant copies of data. 

New theory…. 
•   Potential 2.5D communication savings 

•   #words moved, by factor of c1/2 
•   #messages sent, by factor of c3/2 

•   minimized in 3D case (c = P1/3) 

   Tune to find optimal duplication factor c 

…. leads to faster algorithms 
•   New 2.5D matrix-matrix multiplication algorithm 

•  Predict up to 5x speedups on future exascale hardware 
•  using up to c=100 copies 

•   Also new 2.5D LU algorithm … 

2.5D algorithms II 
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(SEE POSTER) 
Solomonik 

Flanders ExaScience Lab 
(Intel Labs Europe) sending 
visitor this spring. 
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Direct linear algebra does Θ(nω) flops.!
Conventional algorithms: ω = 3 
Strassen-like algorithms:               ω < 3 
   eg: ω ≈ 2.81 (Strassen’s matmul) 

New theory ... 
•  Strassen-like matmuls can communicate less than conventional matmuls.!

•  # words moved decreases: !

•  # messages M times smaller!

… leads to new algorithms!
•  Result: Strassen-like matmul attains these lower bounds in serial!
•  Can we attain these bounds in parallel?!

•  We believe we can… (current work)!
•  Rest of sequential direct linear algebra (LU, QR, …) can attain the same bounds.!

•  We believe it can in parallel too… (current work)!

Fast matmul comm. complexity 
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CA-Krylov methods I!

12!

Communication-avoiding biconjugate 
gradient method 

“CA-BiCG” 
  Previously seen in poster, summer 2010 retreat 

  BiCG solves sparse, nonsymmetric systems of equations 
  CA-BiCG mathematically-equivalent formulation; takes multiple 

iterations with communication cost of one iteration of BiCG.  

    BiCG vs. GMRES 
   GMRES: faster convergence and more stable, in theory and in practice  
   BiCG: small, constant-size workspace, less work per iteration 
   Stabilized variants (eg, BiCGStab) used in practice 

  New communication-avoiding algorithms:  
  BiCG (2-term), CGS, BiCGStab, BiCGStab(l) 
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•  Reduce communication by factor of s  
•  CA-BiCGStab follows convergence of standard 
BiCGStab, even with s=10 
•  Hard problem! BiCGStab fails to converge in n its.  

•   Preconditioning needed 

CA-Krylov methods II!

young3c 
N=841 
nnz=3988 
κ=1.15e4 

(SEE POSTER) 
Knight, Carson 
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CA-Krylov methods III!
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Communication-avoiding generalized minimum 
residual method 
“CA-GMRES” 

  Previously seen in poster, winter 2010 retreat 
  Success story: Parlab  DOE-funded 

  CA-GMRES expected to appear in Spring 2011 Trilinos release 
  Contains tall-skinny QR (TSQR) based on Parlab work 

•  Intel TBB + MPI 
  Ongoing work: 

•   Incorporate M. Anderson's GPU TSQR 
•  New CA-GMRES variants: Flexible GMRES, Recycling GMRES 
•  Fault tolerance 

(SEE POSTER) 
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New matrix powers kernel 

  Previously (Winter 2010): 
  Matrix powers kernel: key to avoiding synchronization in Krylov 

subspace methods (BiCG, GMRES, etc) 
  [A, s, x]  [x, Ax, A2x, …, Asx] 
  Analyzes system A at runtime 

New algorithmic variants required by new CA Krylov methods: 
  Both A and AT 

  [A, s, x]  [[x, Ax, A2x, …, Asx], [x, ATx, (AT)2x, …, (AT)sx]] 
  Multiple source vectors 
  [A, s, X]  [X, AX, A2X, …, AsX] 

  Hypergraph partitioning (new communication model) 
  Beats current graph partitioning approach for structured, nonsymmetric 

matrices. (Up to 80% fewer words moved) 

  Extends to (nonlinear) Health App!
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(SEE POSTER) 
Carson, Knight 
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OSKI  
(Optimized Sparse Kernel Interface)!

  Functional portability !
  Python interface (via SEJITS)!
  C code underneath!

  Performance portability!
  search/tune at install time!

Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Vector Mul 
specialized 

to n,m, 
structure 

OSKI 
Autotuner: 
code generator 
+search 

Optimized Sparse Kernel Interface (OSKI):!
Autotuned Sparse Matrix-Vector Multiplication (SpMV)!

  Huge algorithm design space!
  Performance = f(structure,dimension) !

-  vs. dense matrix-vector mult: Perf = f(dimension)!
-  Runtime tuning necessary!

Protein FEM / 
Spheres 

FEM / 
Cantilever 

FEM / 
Accelerator Circuit webbase 

OSKI Library 
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Efficient sparse codes are difficult to write 
(SEE POSTER) Arnold, Bodik 
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Benchmark 
data 

1. Build for 
Target 
Arch. 

2. Benchmark 

Heuristic 
models 

1. Evaluate 
Models 

Generated 
code 

variants 

2. Select 
Data Struct. 

& Code 

Library Install-Time (offline) Application Run-Time 

To user: 
Matrix handle 
for kernel 
calls 

Workload 
from program 

monitoring 

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system. 

History 
Matrix 

How OSKI tunes: 

OSKI  
(Optimized Sparse Kernel Interface)!
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  Index compression!
  Array padding!
  Software prefetching!
  Software pipelining!
  Loop unrolling (depths)!
  SpMM (multiple source vectors)!
  Variable block splitting!
  Switch-to-dense (SpTS)!
  Cache interleaving (ATA)!
  Sparse tiling (Akx)!
  Symmetric storage for multicore!
  SIMD intrinsics!
  Data decomposition (shared/dist)!
  NUMA awareness!
  Hiding latency!

  Reordering (RCM, TSP, …)!
  TLB blocking!
  Cache-blocking heuristics!
  Storage formats:!

•  CSB (compressed sparse block)!
•  Vector-style (manycore/GPU)!
•  DCSR (delta-coded CSR)!
•  RPCSR (row-pattern CSR)!
•  PBR (pattern-based repr.) !
•  RSDF (row-segmented diagonal 

fmt.)!
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OSKI development I!
Algorithm design space for next (p)OSKI release: 
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 Requested functionality (from HPC world): 
  Change non-zero pattern of the matrix 

•  Matrix may change or be perturbed during computation 
  Assemble a matrix from (possibly overlapping) fragments 

•  Common in finite element methods 
  Perform variable block splitting 

•  A = A1 + A2  where A1 and A2 have different natural block sizes 

 Our (proposed) solutions:  
  List_of_matrices: allows a matrix to be expressed as a sum of matrices 

(A = A1 + ... + An ) 
•  Easily allows for assembly from fragments and variable splitting 
•  Pattern update: represent the changed entry as the addition of 

another matrix 
   Merge() method: Merges the list A1 + ... + An   into a single matrix 

  User can decide when to merge matrices, or… 
  In the future, merging may also be a tuning decision made by OSKI 
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OSKI development II!
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Questions?!

21 



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

Extra Slides!
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Summary of Performance Optimizations 

  Optimizations for SpMV!
  Register blocking (RB): up to 4x over CSR!
  Variable block splitting: 2.1x over CSR, 1.8x over RB!
  Diagonals: 2x over CSR!
  Reordering to create dense structure + splitting: 2x over CSR!
  Symmetry: 2.8x over CSR, 2.6x over RB!
  Cache blocking: 2.8x over CSR!
  Multiple vectors (SpMM): 7x over CSR!
  And combinations…!

  Sparse triangular solve!
  Hybrid sparse/dense data structure: 1.8x over CSR!

  Higher-level kernels!
  A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB!
  A2·x: 2x over CSR, 1.5x over RB!
  [A·x, A2·x, A3·x, .. , Ak·x] !
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Algorithms have two costs: 
1. Arithmetic (flops) 
2. Communication: moving data between  

Why Avoid Communication? 
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CPU 
DRAM CPU 

Cache 

CPU 
DRAM 

CPU 
DRAM 

CPU 
DRAM 

DRAM 

•  levels of a memory 
hierarchy (sequential)  •  processors (parallel) 

•  messages (distributed mem) 

•  cache-coherency (shared mem) 
•  data transfers (bus-based) 
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  Running time of an algorithm is sum of 3 terms:!
–  # flops * time_per_flop!
–  # words moved / bandwidth!
–  # messages * latency!

25 

 communication!

•  Time_per_flop  <<  1/ bandwidth  <<  latency!
•  Gaps growing exponentially with time (FOSC, 2004)!

•  Goal : reorganize linear algebra to avoid communication!
•  Between all memory hierarchy levels !

•     L1            L2            DRAM            network,  etc !
•  Not just hiding communication (speedup ≤ 2x ) !
•  Arbitrary speedups possible!

Annual improvements 
Time_per_flop Bandwidth Latency 

Network 26% 15% 
DRAM 23% 5% 59% 

Why Avoid Communication? 
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Avoiding Communication 

•    Let M = “fast” memory size (per processor).   Then,!

•    Parallel case: assume either load- or memory- balanced!
•    Trivial lower bound: #words moved ≥ #inputs + #outputs!

•    Holds for: !
•    BLAS, LU, QR, EVD/SVD, tensor contractions, …!
•    Some whole programs (sequences of these operations, no matter how       
!individual ops are interleaved, e.g., Ak)!

•    Sequential and parallel algorithms!
•    Some graph theoretic algorithms (e.g., Floyd-Warshall)!
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  P processors: # words moved =!

  2D algorithms: distribute matrices (2D arrays) across                   (logical) 2D grid of 
processors !

  If one copy of data, !

  What if you have extra memory? !

  3D algorithms: distribute matrices across                                     processor cube, !
  P1/3 duplicate copies of data (M increased by a factor of P1/3)!
  This decreases lower bounds for:!

-  # words moved by a factor of P1/6!

-  # messages sent by a factor of P1/2!

  2.5D algorithms: !
                      copies of data: smooth transition between 2D to 3D bounds.!
  Flexibility!

SEE POSTER!

2.5D algorithms 
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(intuition: make M bigger!) 



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

28 

Model Parameters:!

•  1 x 1018   flops/s (`exa-ʼ)!
•  24 PB total memory!
•  220  nodes  24 GB/node!
•  100 GB/s interconnect 

bandwidth (overestimate?)!
•  100 ns network latency!

Predicted exascale speedups 

2.5D algorithms 
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Model Parameters:!

•  1 x 1018   flops/s (`exa-ʼ)!
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•  220  nodes  24 GB/node!
•  100 GB/s interconnect 

bandwidth (overestimate?)!
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2.5D algorithms 
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Name n NNZ Pattern  
Symmetry 

Value  
Symmetry 

Condition 
Number Application 

dw2048 2048 10114 No No 5.3015e3 
Electromagnetics 

Problem  
(H. Dong, 1993) 
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CA-BiCGStab convergence 

CA-Krylov methods II!



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

• M = fast memory size !
• Conventional matrix-matrix multiplication (matmul)!

•  # flops = 2n3!

•  # words moved =                                                    ,  , attainable!

•  # messages = ! ! ! !           , attainable!

• Strassenʼs matmul !
•  # flops = Θ(nω) where ω = log2(7) ≈ 2.81!

•  # words moved =                               ,  attainable too!

•  # messages =                           ,  attainable too!
• Applies to all other Fast matmul algorithms we know!

• How broadly does it apply?!
• We know rest of linear algebra can be done in O(n ω) flops and 

attain these #words moved and #messages, in serial.!
•  If these are valid lower bounds, then they are tight!

Fast matmul comm. complexity 
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