

Communication-avoidance and Automatic performance tuning

Nick Knight UC-Berkeley Parlab (Bebop group)

Students and Collaborators (Bebop)

- Pls
 - James Demmel
 - Kathy Yelick
- Students
 - Marghoob Mohiyuddin
 - Shoaib Kamil
 - Vasily Volkov
 - Andrew Gearheart
 - Razvan Carbunescu
 - Grey Ballard
 - Nick Knight
 - Erin Carson
 - Edgar Solomonik
 - Michael Anderson
 - Gilad Arnold

- Collaborators
 - Mark Hoemmen (Sandia)
 - Mike Heroux (Sandia)
 - Jack Dongarra (UTK)
 - Laura Grigori (INRIA)
 - Simplice Donfack (INRIA)
 - Amal Khabou (INRIA)
 - Oded Schwartz (TU-Berlin + UCB)
 - Olga Holtz (UCB)
 - Ming Gu (UCB)
 - Ioana Dumitriu (UW)
 - Julien Langou (UC-Denver)
 - Samuel Williams (LBNL)
 - Aydin Buluc (LBNL)
 - Kamesh Madduri (LBNL)
 - Jong-Ho Byun (UCB)
 - Armando Fox (UCB)
 - Ras Bodik (UCB)
 - Tony Keaveny (UCB)

Talk outline

Developing efficient algorithms

- Strategy: avoiding communication
- Dense linear algebra
 - Heterogeneous comm. complexity
 - Eigenvalue problems
 - 2.5D algorithms
 - Fast matmul comm. complexity
 - CA-pivoting (ask me about it)
- Sparse linear algebra
 - CA-Krylov methods
 - New matrix powers kernel

Automatic performance tuning

- OSKI (Optimized Sparse Kernel Interface)
- Future development

Avoiding communication

Communication =

- Data movement and synchronization
- The dominant performance bottleneck in numerical codes

Comm. lower bounds for direct linear algebra:

#words moved = $\Omega(\#flops / M^{1/2})$

• #messages sent = Ω (#flops / $M^{3/2}$)

M = fast/local memory size

Standard algorithms do not attain these bounds!

We develop:

- Direct algorithms that attain these bounds (communication-optimal)
- Iterative algorithms that solve problems with optimal communication.

Speedups on today's, future hardware

Talk outline

Developing efficient algorithms

- Strategy: avoiding communication
- Dense linear algebra
 - Heterogeneous comm. complexity
 - Eigenvalue problems
 - 2.5D algorithms
 - Fast matmul comm. complexity
 - CA-pivoting (ask me about it)
- Sparse linear algebra
 - CA-Krylov methods
 - New matrix powers kernel

Automatic performance tuning

- OSKI (Optimized Sparse Kernel Interface)
- Future development

Heterogeneous comm. complexity

Heterogeneous memory model (Different speeds, bandwidths, latencies)

How best to reduce communication costs on heterogeneous machine?

- New theoretical results:
 - Model algorithm costs as linear program
 - Solution gives you optimal partition of flops
- New theory → FASTER ALGORITHMS

(dense) matrix-vector multiply

(dense) matrix-matrix multiply

(SEE POSTER)
Gearhart, Ballard

Eigenvalue problems and SVD

Applications:

- Image processing (M. Anderson's talk yesterday)
- Previously:
 - Presented three new algorithms at Winter 2010 retreat
 - Solve eigenvalue and singular value problems with less communication

New algorithm for successive band-reduction

- Minimizes bandwidth and latency costs in serial
- Parallel SBR and implementations in development

2.5D algorithms I

2D processor array

1 copy of data

Special case: $c = P^{1/3}$ copies Cube of processors: $P^{1/3} \times P^{1/3} \times P^{1/3}$

2.5D processor array dimensions: (P/c)^{1/2} x (P/c)^{1/2} x c

 $1 \le c \le P^{1/3}$ copies of data, one per `plane' in the k direction

2.5D algorithms II

Do you have extra memory available?

In direct linear algebra, we can

use it to avoid communication

by storing $1 \le c \le P^{1/3}$ redundant copies of data.

New theory....

- Potential 2.5D communication savings
 - #words moved, by factor of c^{1/2}
 - #messages sent, by factor of c^{3/2}
 - minimized in 3D case (c = P^{1/3})
- → Tune to find optimal duplication factor c

Flanders ExaScience Lab (Intel Labs Europe) sending visitor this spring.

.... leads to faster algorithms

- New 2.5D matrix-matrix multiplication algorithm
 - Predict up to 5x speedups on future exascale hardware
 - using up to c=100 copies
- Also new 2.5D LU algorithm ...

(SEE POSTER) Solomonik

Fast matmul comm. complexity

Direct linear algebra does $\Theta(n^{\omega})$ flops.

Conventional algorithms: $\omega = 3$

Strassen-like algorithms: $\omega < 3$

eg: $\omega \approx 2.81$ (Strassen's matmul)

New theory ...

Strassen-like matmuls can communicate less than conventional matmuls.

• # words moved decreases:
$$\Omega\left(\frac{n^3}{M^{1/2}}\right) = \Omega\left(M\left(\frac{n}{M^{1/2}}\right)^3\right) \longrightarrow \Omega\left(M\left(\frac{n}{M^{1/2}}\right)^\omega\right)$$

• # messages M times smaller

... leads to new algorithms

- Result: Strassen-like matmul attains these lower bounds in serial
- Can we attain these bounds in parallel?
 - We believe we can... (current work)
- Rest of sequential direct linear algebra (LU, QR, ...) can attain the same bounds.
 - We believe it can in parallel too... (current work)

Talk outline

Developing efficient algorithms

- Strategy: avoiding communication
- Dense linear algebra
 - Heterogeneous comm. complexity
 - Eigenvalue problems
 - 2.5D algorithms
 - Fast matmul comm. complexity
 - CA-pivoting (ask me about it)
- Sparse linear algebra
 - CA-Krylov methods
 - New matrix powers kernel

Automatic performance tuning

- OSKI (Optimized Sparse Kernel Interface)
- Future development

CA-Krylov methods I

Communication-avoiding biconjugate gradient method

"CA-BiCG"

- Previously seen in poster, summer 2010 retreat
 - BiCG solves sparse, nonsymmetric systems of equations
 - CA-BiCG mathematically-equivalent formulation; takes multiple iterations with communication cost of one iteration of BiCG.
- BiCG vs. GMRES
 - GMRES: faster convergence and more stable, in theory and in practice
 - BiCG: small, constant-size workspace, less work per iteration
 - Stabilized variants (eg, BiCGStab) used in practice
- New communication-avoiding algorithms:
 - BiCG (2-term), CGS, BiCGStab, BiCGStab(I)

CA-Krylov methods II

young3c N=841 nnz=3988 $\kappa = 1.15e4$

- Reduce communication by factor of s
- CA-BiCGStab follows convergence of standard BiCGStab, even with s=10
- Hard problem! BiCGStab fails to converge in n its.
 - Preconditioning needed

CA-Krylov methods III

Communication-avoiding generalized minimum residual method "CA-GMRES"

- Previously seen in poster, winter 2010 retreat
- Success story: Parlab → DOE-funded
 - CA-GMRES expected to appear in Spring 2011 Trilinos release
 - Contains tall-skinny QR (TSQR) based on Parlab work
 - . Intel TBB + MPI
 - Ongoing work:
 - Incorporate M. Anderson's GPU TSQR (SEE POSTER)
 - New CA-GMRES variants: Flexible GMRES, Recycling GMRES
 - Fault tolerance

New matrix powers kernel

- Previously (Winter 2010):
 - Matrix powers kernel: key to avoiding synchronization in Krylov subspace methods (BiCG, GMRES, etc)
 - $[A, s, x] \rightarrow [x, Ax, A^2x, ..., A^sx]$
 - Analyzes system A at runtime

New algorithmic variants required by new CA Krylov methods:

- Both A and A^T
 - $[A, s, x] \rightarrow [[x, Ax, A^2x, ..., A^sx], [x, A^Tx, (A^T)^2x, ..., (A^T)^sx]]$
 - Multiple source vectors
 - $[A, s, X] \rightarrow [X, AX, A^2X, ..., A^sX]$
- Hypergraph partitioning (new communication model)
 - Beats current graph partitioning approach for structured, nonsymmetric matrices. (Up to 80% fewer words moved)
- Extends to (nonlinear) Health App

(SEE POSTER) Carson, Knight

Talk outline

Developing efficient algorithms

- Strategy: avoiding communication
- Dense linear algebra
 - Heterogeneous comm. complexity
 - Eigenvalue problems
 - 2.5D algorithms
 - Fast matmul comm. complexity
 - CA-pivoting (ask me about it)
- Sparse linear algebra
 - CA-Krylov methods
 - New matrix powers kernel

Automatic performance tuning

- OSKI (Optimized Sparse Kernel Interface)
- OSKI development

OSKI (Optimized Sparse Kernel Interface)

- Functional portability
 - Python interface (via SEJITS)
 - C code underneath
- Performance portability
 - search/tune at install time

Optimized Sparse Kernel Interface (OSKI):

Autotuned Sparse Matrix-Vector Multiplication (SpMV)

- Huge algorithm design space
- Performance = f(structure, dimension)
 - vs. dense matrix-vector mult: Perf = f(dimension)
 - Runtime tuning necessary

Efficient sparse codes are difficult to write (SEE POSTER) Arnold, Bodik

OSKI (Optimized Sparse Kernel Interface)

How OSKI tunes:

OSKI development I

Algorithm design space for next (p)OSKI release:

- Index compression
- Array padding
- Software prefetching
- Software pipelining
- Loop unrolling (depths)
- SpMM (multiple source vectors)
- Variable block splitting
- Switch-to-dense (SpTS)
- Cache interleaving (A^TA)
- Sparse tiling (A^kx)
- Symmetric storage for multicore
- SIMD intrinsics
- Data decomposition (shared/dist)
- NUMA awareness
- Hiding latency

- Reordering (RCM, TSP, ...)
- TLB blocking
- Cache-blocking heuristics
- Storage formats:
 - CSB (compressed sparse block)
 - Vector-style (manycore/GPU)
 - DCSR (delta-coded CSR)
 - RPCSR (row-pattern CSR)
 - PBR (pattern-based repr.)
 - RSDF (row-segmented diagonal fmt.)

OSKI development II

Requested functionality (from HPC world):

- Change non-zero pattern of the matrix
 - Matrix may change or be perturbed during computation
- Assemble a matrix from (possibly overlapping) fragments
 - Common in finite element methods
- Perform variable block splitting
 - $A = A_1 + A_2$ where A_1 and A_2 have different natural block sizes

Our (proposed) solutions:

- List_of_matrices: allows a matrix to be expressed as a sum of matrices
 (A = A₁ + ... + A_n)
 - Easily allows for assembly from fragments and variable splitting
 - Pattern update: represent the changed entry as the addition of another matrix
- Merge() method: Merges the list A₁ + ... + A_n into a single matrix
 - User can decide when to merge matrices, or...
 - In the future, merging may also be a tuning decision made by OSKI

Questions?

Extra Slides

Summary of Performance Optimizations

- Optimizations for SpMV
 - Register blocking (RB): up to 4x over CSR
 - Variable block splitting: 2.1x over CSR, 1.8x over RB
 - Diagonals: 2x over CSR
 - Reordering to create dense structure + splitting: 2x over CSR
 - Symmetry: 2.8x over CSR, 2.6x over RB
 - Cache blocking: 2.8x over CSR
 - Multiple vectors (SpMM): 7x over CSR
 - And combinations...
- Sparse triangular solve
 - Hybrid sparse/dense data structure: 1.8x over CSR
- Higher-level kernels
 - A·A^T·x, A^T·A·x: 4x over CSR, 1.8x over RB
 - **A**²·**x**: **2x** over CSR, 1.5x over RB
 - $[A \cdot x, A^2 \cdot x, A^3 \cdot x, ..., A^k \cdot x]$

Why Avoid Communication?

Algorithms have two costs:

- 1. Arithmetic (flops)
- 2. Communication: moving data between
- levels of a memory hierarchy (sequential)
- CPUCache

- processors (parallel)
 - messages (distributed mem)

- cache-coherency (shared mem)
- data transfers (bus-based)

Why Avoid Communication?

- Running time of an algorithm is sum of 3 terms:
 - # flops * time_per_flop
 - # words moved / bandwidth
 - # messages * latency

-communication

- Time_per_flop << 1/ bandwidth << latency
 - Gaps growing exponentially with time (FOSC, 2004)

Annual improvements						
Time_per_flop		Bandwidth	Latency			
	Network	26%	15%			
59%	DRAM	23%	5%			

- Goal: reorganize linear algebra to avoid communication
 - Between all memory hierarchy levels
 - L1 ←→ L2 ←→ DRAM ←→ network, etc
 - Not just *hiding* communication (speedup $\leq 2x$)
 - Arbitrary speedups possible

Avoiding Communication

Let M = "fast" memory size (per processor). Then,

$$\#$$
 words moved (per processor) = $\Omega\left(\frac{\# \text{ flops per processor}}{M^{1/2}}\right)$

messages sent (per processor) =
$$\Omega\left(\frac{\text{# flops per processor}}{M^{3/2}}\right)$$

- Parallel case: assume either load- or memory- balanced
- Trivial lower bound: #words moved ≥ #inputs + #outputs
- Holds for:
 - BLAS, LU, QR, EVD/SVD, tensor contractions, ...
 - Some whole programs (sequences of these operations, no matter how individual ops are interleaved, e.g., A^k)
 - Sequential and parallel algorithms
 - Some graph theoretic algorithms (e.g., Floyd-Warshall)

2.5D algorithms

- P processors: # words moved = $\Omega\left(\frac{n^3/P}{M^{1/2}}\right)$ (intuition: make M bigger!)
- 2D algorithms: distribute matrices (2D arrays) across $\sqrt{P} \times \sqrt{P}$ (logical) 2D grid of processors
 - If one copy of data, $M = \frac{n^2}{P}$
 - What if you have extra memory?
- 3D algorithms: distribute matrices across $P^{1/3} \times P^{1/3} \times P^{1/3}$ processor cube,
 - P^{1/3} duplicate copies of data (M increased by a factor of P^{1/3})
 - This decreases lower bounds for:
 - # words moved by a factor of P^{1/6}
 - # messages sent by a factor of P^{1/2}
- 2.5D algorithms:
 - $1 \le c \le P^{1/3}$ copies of data: smooth transition between 2D to 3D bounds.
 - Flexibility

SEE POSTER

2.5D algorithms

Predicted exascale speedups

Model Parameters:

- 1 x 10¹⁸ flops/s (`exa-')
- 24 PB total memory
- 2²⁰ nodes → 24 GB/node
- 100 GB/s interconnect bandwidth (overestimate?)
- 100 ns network latency

2.5D algorithms

2.5D Best choice of c for efficiency

2.5D Best choice of C for efficiency											
	30	1	1	1	1	1	1	1	1	1	1
	28	2	3	4	4	4	4	4	4	4	4
	26	2	3	4	6	10	16	15	16	15	16
	24	2	3	4	6	10	16	25	40	64	57
(d/	22	2	3	4	6	10	16	25	40	64	102
$\log_2(n^2/p)$	20	2	3	4	6	10	16	25	40	64	102
ŏ	18	2	3	4	6	10	16	25	40	64	102
	16	2	3	4	6	10	16	25	40	64	102
	14	2	3	4	6	10	16	25	40	64	102
	12	2	3	4	6	10	16	25	40	64	102
	10	2	3	4	6	10	16	25	40	64	102
	•	2	4	9	00	10	12	14	16	<u>&</u>	20
	log ₂ (p)										
						_					

Model Parameters:

- 1 x 10¹⁸ flops/s (`exa-')
- 24 PB total memory
- 2²⁰ nodes → 24 GB/node
- 100 GB/s interconnect bandwidth (overestimate?)
- 100 ns network latency

CA-Krylov methods II

CA-BiCGStab convergence

Name	n	NNZ	Pattern Symmetry	Value Symmetry	Condition Number	Application
dw2048	2048	10114	No	No	5.3015e3	Electromagnetics Problem (H. Dong, 1993)

Fast matmul comm. complexity

- M = fast memory size
- Conventional matrix-matrix multiplication (matmul)

• # flops =
$$2n^3$$

• # words moved =
$$\Omega\left(\frac{n^3}{M^{1/2}}\right) = \Omega\left(M\left(\frac{n}{M^{1/2}}\right)^3\right)$$
, attainable

• # messages =
$$\Omega\left(\frac{n^3}{M^{3/2}}\right) = \Omega\left(\left(\frac{n}{M^{1/2}}\right)^3\right)$$
 , attainable

- Strassen's matmul
 - # flops = $\Theta(n^{\omega})$ where $\omega = \log_2(7) \approx 2.81$

• # words moved =
$$\Omega\left(M\left(\frac{n}{M^{1/2}}\right)^{\omega}\right)$$
 , attainable too

• # messages =
$$\Omega\left(\left(\frac{n}{M^{1/2}}\right)^{\omega}\right)$$
 , attainable too

- Applies to all other Fast matmul algorithms we know
 - How broadly does it apply?
 - We know rest of linear algebra can be done in O(n ω) flops and attain these #words moved and #messages, in serial.
 - If these are valid lower bounds, then they are tight