
EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Communication-avoidance!
and!

Automatic performance tuning!
Nick Knight!

UC-Berkeley Parlab (Bebop group)!

1

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB
Students and Collaborators (Bebop)

  PIs!
  James Demmel!
  Kathy Yelick!

  Students!
  Marghoob Mohiyuddin!
  Shoaib Kamil!
  Vasily Volkov!
  Andrew Gearheart!
  Razvan Carbunescu!
  Grey Ballard!
  Nick Knight!
  Erin Carson!
  Edgar Solomonik!
  Michael Anderson!
  Gilad Arnold!

  Collaborators!
  Mark Hoemmen (Sandia)!
  Mike Heroux (Sandia)!
  Jack Dongarra (UTK)!
  Laura Grigori (INRIA)!
  Simplice Donfack (INRIA)!
  Amal Khabou (INRIA)!
  Oded Schwartz (TU-Berlin + UCB)!
  Olga Holtz (UCB)!
  Ming Gu (UCB)!
  Ioana Dumitriu (UW)!
  Julien Langou (UC-Denver)!
  Samuel Williams (LBNL)!
  Aydin Buluc (LBNL)!
  Kamesh Madduri (LBNL)!
  Jong-Ho Byun (UCB)!
  Armando Fox (UCB)!
  Ras Bodik (UCB)!
  Tony Keaveny (UCB)!

2

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Talk outline

  Developing efficient algorithms!
  Strategy: avoiding communication!
  Dense linear algebra!

•  Heterogeneous comm. complexity!
•  Eigenvalue problems!
•  2.5D algorithms!
•  Fast matmul comm. complexity!
•  CA-pivoting (ask me about it)!

  Sparse linear algebra!
•  CA-Krylov methods!
•  New matrix powers kernel!

  Automatic performance tuning!
  OSKI (Optimized Sparse Kernel Interface)!
  Future development!

3

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Communication =!
  Data movement and synchronization!
  The dominant performance bottleneck in numerical codes!

Comm. lower bounds for direct linear algebra:!
  #words moved = Ω(#flops / M1/2

)!
  #messages sent = Ω(#flops / M3/2

) !
  Standard algorithms do not attain these bounds!!

We develop:!
  Direct algorithms that attain these bounds

(communication-optimal)!
  Iterative algorithms that solve problems with

optimal communication.!
!Speedups on todayʼs, future hardware!

Avoiding communication

4

M = fast/local
memory size

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Talk outline

  Developing efficient algorithms!
  Strategy: avoiding communication!
  Dense linear algebra!

•  Heterogeneous comm. complexity!
•  Eigenvalue problems!
•  2.5D algorithms!
•  Fast matmul comm. complexity!
•  CA-pivoting (ask me about it)!

  Sparse linear algebra!
•  CA-Krylov methods!
•  New matrix powers kernel!

  Automatic performance tuning!
  OSKI (Optimized Sparse Kernel Interface)!
  Future development!

5

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Heterogeneous comm. complexity

How best to reduce communication costs
on heterogeneous machine?!

  New theoretical results: !
  Model algorithm costs as linear program!
  Solution gives you optimal partition of flops!

  New theory  FASTER ALGORITHMS!

6

Heterogeneous memory model!
(Different speeds, bandwidths, latencies) !

 (dense) matrix-vector multiply!

(dense) matrix-matrix multiply!

(SEE POSTER)
Gearhart, Ballard

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB
Eigenvalue problems and SVD

Applications:!
  Image processing (M. Andersonʼs talk yesterday)!
Previously:!

  Presented three new algorithms at Winter 2010 retreat!

  Solve eigenvalue and singular value problems with less communication!
New algorithm for successive band-reduction!

  Minimizes bandwidth and latency costs in serial!
  Parallel SBR and implementations in development!

7

dense banded tridiagonal

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB
2.5D algorithms I

8

2D processor array

Special case: c = P1/3 copies
Cube of processors: P1/3 x P1/3 x P1/3

P1/2

P1/2

1
1

1 copy of data

1 ≤ c ≤ P1/3 copies of data,
one per `plane’ in the k direction

2.5D processor array
dimensions: (P/c)1/2 x (P/c)1/2 x c

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Do you have extra memory available?
In direct linear algebra, we can
use it to avoid communication
by storing 1 ≤ c ≤ P1/3 redundant copies of data.

New theory….
•  Potential 2.5D communication savings

•  #words moved, by factor of c1/2
•  #messages sent, by factor of c3/2

•  minimized in 3D case (c = P1/3)

 Tune to find optimal duplication factor c

…. leads to faster algorithms
•  New 2.5D matrix-matrix multiplication algorithm

•  Predict up to 5x speedups on future exascale hardware
•  using up to c=100 copies

•  Also new 2.5D LU algorithm …

2.5D algorithms II

9

(SEE POSTER)
Solomonik

Flanders ExaScience Lab
(Intel Labs Europe) sending
visitor this spring.

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Direct linear algebra does Θ(nω) flops.!
Conventional algorithms: ω = 3
Strassen-like algorithms: ω < 3
 eg: ω ≈ 2.81 (Strassen’s matmul)

New theory ...
•  Strassen-like matmuls can communicate less than conventional matmuls.!

•  # words moved decreases: !

•  # messages M times smaller!

… leads to new algorithms!
•  Result: Strassen-like matmul attains these lower bounds in serial!
•  Can we attain these bounds in parallel?!

•  We believe we can… (current work)!
•  Rest of sequential direct linear algebra (LU, QR, …) can attain the same bounds.!

•  We believe it can in parallel too… (current work)!

Fast matmul comm. complexity

10

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Talk outline

  Developing efficient algorithms!
  Strategy: avoiding communication!
  Dense linear algebra!

•  Heterogeneous comm. complexity!
•  Eigenvalue problems!
•  2.5D algorithms!
•  Fast matmul comm. complexity!
•  CA-pivoting (ask me about it)!

  Sparse linear algebra!
•  CA-Krylov methods!
•  New matrix powers kernel!

  Automatic performance tuning!
  OSKI (Optimized Sparse Kernel Interface)!
  Future development!

11

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

CA-Krylov methods I!

12!

Communication-avoiding biconjugate
gradient method

“CA-BiCG”
  Previously seen in poster, summer 2010 retreat

  BiCG solves sparse, nonsymmetric systems of equations
  CA-BiCG mathematically-equivalent formulation; takes multiple

iterations with communication cost of one iteration of BiCG.

  BiCG vs. GMRES
  GMRES: faster convergence and more stable, in theory and in practice
  BiCG: small, constant-size workspace, less work per iteration
  Stabilized variants (eg, BiCGStab) used in practice

  New communication-avoiding algorithms:
  BiCG (2-term), CGS, BiCGStab, BiCGStab(l)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

13

•  Reduce communication by factor of s
•  CA-BiCGStab follows convergence of standard
BiCGStab, even with s=10
•  Hard problem! BiCGStab fails to converge in n its.

•  Preconditioning needed

CA-Krylov methods II!

young3c
N=841
nnz=3988
κ=1.15e4

(SEE POSTER)
Knight, Carson

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

CA-Krylov methods III!

14!

Communication-avoiding generalized minimum
residual method
“CA-GMRES”

  Previously seen in poster, winter 2010 retreat
  Success story: Parlab  DOE-funded

  CA-GMRES expected to appear in Spring 2011 Trilinos release
  Contains tall-skinny QR (TSQR) based on Parlab work

•  Intel TBB + MPI
  Ongoing work:

•  Incorporate M. Anderson's GPU TSQR
•  New CA-GMRES variants: Flexible GMRES, Recycling GMRES
•  Fault tolerance

(SEE POSTER)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB
New matrix powers kernel

  Previously (Winter 2010):
  Matrix powers kernel: key to avoiding synchronization in Krylov

subspace methods (BiCG, GMRES, etc)
  [A, s, x]  [x, Ax, A2x, …, Asx]
  Analyzes system A at runtime

New algorithmic variants required by new CA Krylov methods:
  Both A and AT

  [A, s, x]  [[x, Ax, A2x, …, Asx], [x, ATx, (AT)2x, …, (AT)sx]]
  Multiple source vectors
  [A, s, X]  [X, AX, A2X, …, AsX]

  Hypergraph partitioning (new communication model)
  Beats current graph partitioning approach for structured, nonsymmetric

matrices. (Up to 80% fewer words moved)

  Extends to (nonlinear) Health App!

15

(SEE POSTER)
Carson, Knight

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Talk outline

  Developing efficient algorithms!
  Strategy: avoiding communication!
  Dense linear algebra!

•  Heterogeneous comm. complexity!
•  Eigenvalue problems!
•  2.5D algorithms!
•  Fast matmul comm. complexity!
•  CA-pivoting (ask me about it)!

  Sparse linear algebra!
•  CA-Krylov methods!
•  New matrix powers kernel!

  Automatic performance tuning!
  OSKI (Optimized Sparse Kernel Interface)!
  OSKI development!

16

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

OSKI  
(Optimized Sparse Kernel Interface)!

  Functional portability !
  Python interface (via SEJITS)!
  C code underneath!

  Performance portability!
  search/tune at install time!

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Vector Mul
specialized

to n,m,
structure

OSKI
Autotuner:
code generator
+search

Optimized Sparse Kernel Interface (OSKI):!
Autotuned Sparse Matrix-Vector Multiplication (SpMV)!

  Huge algorithm design space!
  Performance = f(structure,dimension) !

-  vs. dense matrix-vector mult: Perf = f(dimension)!
-  Runtime tuning necessary!

Protein FEM /
Spheres

FEM /
Cantilever

FEM /
Accelerator Circuit webbase

OSKI Library

17

Efficient sparse codes are difficult to write
(SEE POSTER) Arnold, Bodik

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

18

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Heuristic
models

1. Evaluate
Models

Generated
code

variants

2. Select
Data Struct.

& Code

Library Install-Time (offline) Application Run-Time

To user:
Matrix handle
for kernel
calls

Workload
from program

monitoring

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.

History
Matrix

How OSKI tunes:

OSKI  
(Optimized Sparse Kernel Interface)!

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

19

  Index compression!
  Array padding!
  Software prefetching!
  Software pipelining!
  Loop unrolling (depths)!
  SpMM (multiple source vectors)!
  Variable block splitting!
  Switch-to-dense (SpTS)!
  Cache interleaving (ATA)!
  Sparse tiling (Akx)!
  Symmetric storage for multicore!
  SIMD intrinsics!
  Data decomposition (shared/dist)!
  NUMA awareness!
  Hiding latency!

  Reordering (RCM, TSP, …)!
  TLB blocking!
  Cache-blocking heuristics!
  Storage formats:!

•  CSB (compressed sparse block)!
•  Vector-style (manycore/GPU)!
•  DCSR (delta-coded CSR)!
•  RPCSR (row-pattern CSR)!
•  PBR (pattern-based repr.) !
•  RSDF (row-segmented diagonal

fmt.)!

19

OSKI development I!
Algorithm design space for next (p)OSKI release:

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

 Requested functionality (from HPC world):
  Change non-zero pattern of the matrix

•  Matrix may change or be perturbed during computation
  Assemble a matrix from (possibly overlapping) fragments

•  Common in finite element methods
  Perform variable block splitting

•  A = A1 + A2 where A1 and A2 have different natural block sizes

 Our (proposed) solutions:
  List_of_matrices: allows a matrix to be expressed as a sum of matrices

(A = A1 + ... + An)
•  Easily allows for assembly from fragments and variable splitting
•  Pattern update: represent the changed entry as the addition of

another matrix
  Merge() method: Merges the list A1 + ... + An into a single matrix

  User can decide when to merge matrices, or…
  In the future, merging may also be a tuning decision made by OSKI

20

OSKI development II!

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Questions?!

21

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Extra Slides!

22

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Summary of Performance Optimizations

  Optimizations for SpMV!
  Register blocking (RB): up to 4x over CSR!
  Variable block splitting: 2.1x over CSR, 1.8x over RB!
  Diagonals: 2x over CSR!
  Reordering to create dense structure + splitting: 2x over CSR!
  Symmetry: 2.8x over CSR, 2.6x over RB!
  Cache blocking: 2.8x over CSR!
  Multiple vectors (SpMM): 7x over CSR!
  And combinations…!

  Sparse triangular solve!
  Hybrid sparse/dense data structure: 1.8x over CSR!

  Higher-level kernels!
  A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB!
  A2·x: 2x over CSR, 1.5x over RB!
  [A·x, A2·x, A3·x, .. , Ak·x] !

23

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Algorithms have two costs:
1. Arithmetic (flops)
2. Communication: moving data between

Why Avoid Communication?

24

CPU
DRAM CPU

Cache

CPU
DRAM

CPU
DRAM

CPU
DRAM

DRAM

•  levels of a memory
hierarchy (sequential) •  processors (parallel)

•  messages (distributed mem)

•  cache-coherency (shared mem)
•  data transfers (bus-based)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

  Running time of an algorithm is sum of 3 terms:!
–  # flops * time_per_flop!
–  # words moved / bandwidth!
–  # messages * latency!

25

 communication!

•  Time_per_flop << 1/ bandwidth << latency!
•  Gaps growing exponentially with time (FOSC, 2004)!

•  Goal : reorganize linear algebra to avoid communication!
•  Between all memory hierarchy levels !

•  L1 L2 DRAM network, etc !
•  Not just hiding communication (speedup ≤ 2x) !
•  Arbitrary speedups possible!

Annual improvements
Time_per_flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5% 59%

Why Avoid Communication?

25

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Avoiding Communication

•  Let M = “fast” memory size (per processor). Then,!

•  Parallel case: assume either load- or memory- balanced!
•  Trivial lower bound: #words moved ≥ #inputs + #outputs!

•  Holds for: !
•  BLAS, LU, QR, EVD/SVD, tensor contractions, …!
•  Some whole programs (sequences of these operations, no matter how
!individual ops are interleaved, e.g., Ak)!

•  Sequential and parallel algorithms!
•  Some graph theoretic algorithms (e.g., Floyd-Warshall)!

26

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

  P processors: # words moved =!

  2D algorithms: distribute matrices (2D arrays) across (logical) 2D grid of
processors !

  If one copy of data, !

  What if you have extra memory? !

  3D algorithms: distribute matrices across processor cube, !
  P1/3 duplicate copies of data (M increased by a factor of P1/3)!
  This decreases lower bounds for:!

-  # words moved by a factor of P1/6!

-  # messages sent by a factor of P1/2!

  2.5D algorithms: !
  copies of data: smooth transition between 2D to 3D bounds.!
  Flexibility!

SEE POSTER!

2.5D algorithms

27

(intuition: make M bigger!)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

28

Model Parameters:!

•  1 x 1018 flops/s (`exa-ʼ)!
•  24 PB total memory!
•  220 nodes  24 GB/node!
•  100 GB/s interconnect

bandwidth (overestimate?)!
•  100 ns network latency!

Predicted exascale speedups

2.5D algorithms

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

29

Model Parameters:!

•  1 x 1018 flops/s (`exa-ʼ)!
•  24 PB total memory!
•  220 nodes  24 GB/node!
•  100 GB/s interconnect

bandwidth (overestimate?)!
•  100 ns network latency!

2.5D algorithms

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Name n NNZ Pattern
Symmetry

Value
Symmetry

Condition
Number Application

dw2048 2048 10114 No No 5.3015e3
Electromagnetics

Problem
(H. Dong, 1993)

30

CA-BiCGStab convergence

CA-Krylov methods II!

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

• M = fast memory size !
• Conventional matrix-matrix multiplication (matmul)!

•  # flops = 2n3!

•  # words moved = , , attainable!

•  # messages = ! ! ! ! , attainable!

• Strassenʼs matmul !
•  # flops = Θ(nω) where ω = log2(7) ≈ 2.81!

•  # words moved = , attainable too!

•  # messages = , attainable too!
• Applies to all other Fast matmul algorithms we know!

• How broadly does it apply?!
• We know rest of linear algebra can be done in O(n ω) flops and

attain these #words moved and #messages, in serial.!
•  If these are valid lower bounds, then they are tight!

Fast matmul comm. complexity

31

