
Large Displacement
Optical Flow &

Applications

Narayanan Sundaram, Kurt Keutzer (Parlab)

In collaboration with

Thomas Brox (University of Freiburg)

Michael Tao (University of California Berkeley)

Parlab Stack

2

Video capture is cheap

• Amount of video
material is increasing
rapidly

• Video recording is
becoming more popular

• Huge gap between video
acquisition and video
analysis capabilities

– Manycore parallelism can
help

3

Can you see the difference?

Springboard diving Vs Platform diving

4

Guess the sport from
trajectory

Springboard diving Platform diving

5

time

Y
-p

o
si

ti
o

n

time

Y
-p

o
si

ti
o

n

Motion is important

 Pre-requisite for next
generation video
applications

 Should track points
densely and accurately
over many frames.

 Optical flow provides the
means to achieve good
tracking

6

Hue indicates the direction of flow and
saturation indicates the magnitude

 Optical Flow involves
computing the motion
vectors (“flow field”)
between the consecutive
frames of a video

Large Displacement Optical
Flow

 Fast motion is very common in
natural videos

• e.g. limbs in human motion,
balls in sports videos

• Simple optical flow models do
not handle this well.

 We use the Large Displacement
Optical Flow (LDOF) algorithm[1]

• Crucial for accurately
measuring large motion of
small objects.

 Incorporates both descriptor
matching and optical flow in a
single mathematical setting

7

[1] T. Brox, J. Malik, “Large displacement optical flow: descriptor matching in variational motion estimation”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, to appear.

Traditional
Optical Flow

With LDOF

Why should we care about
optical flow runtime?

• Average Optical Flow Algorithm timing on
640x480 frame

~60 seconds/frame on 1 core of Nehalem

• Assume videos are 3 minutes long &
algorithm scales to 4 cores linearly

• 83,400,000 videos (April 2008)

 = Only about 214,000 years

• With a cluster of 36,000 nodes

About 6 years!

8

Solution :

Parallelization

Let us run optical flow
on all of youtube!

Coarse

to fine

refinement

Compute du,dv

Update u,v

Interpolate u,v

Down sample frames

Warp frame

Output Flow field

Histogram of Gradients
(Dense matching)

Input Frames

Compute Data,
Smoothness,

HOG Match factors

Assemble matrix A

Solve A.x = b

Update du, dv

Fixed

point

iterations

Sparse Matrix-Vector
Multiply

BLAS 1

Apply Preconditioner

Preconditioned

Conjugate gradient

solver

BLAS 1
BLAS 1

BLAS 1
BLAS 1

BLAS 1

LDOF Application
architecture

Optical Flow solver
(non-linear,
non-convex

optimization)

9

1

10

100

1000

Gauss‐Seidel
(CPU‐1 core)

Precond.
Conj.

Gradient
(CPU‐4
cores)

Red‐black
(GPU)

Precond.
Conj.

Gradient
(GPU)

m
il

li
se

co
n

d
s

Time for convergence (Residual < 10‐2)

Algorithmic exploration is a
must for parallelization

• Numeric & convergence analysis essential for efficient
parallelization

• Efficient linear solvers for serial and parallel platforms are different
(Gauss-Seidel Vs Preconditioned Conjugate gradient)

0.00001

0.0001

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60

Sq
u

ar
ed

 n
o

rm
 o

f
th

e
re

si
d

u
al

Iterations

Choice of linear solver

Red-black
Gauss Seidel
CG - block Jacobi preconditioner
CG-No Preconditioner

40%

faster

10

5x

faster

Implementing efficient Sparse
Matrix Vector Multiply

Most compute intensive
component

Linear equations in 2*# pixels
variables
• For each pixel, one variable

each for x and y displacement

6 – point stencil structure,
coupled equations
• Explicitly stored matrix

We achieve 53 SP GFlops for
the SpMV computations on
Fermi (GTX 280)

(x,y)

(x,y+1)

(x,y-1)

(x-1,y)
(x+1,y)

du, dv refer to x and y displacements respectively

Sparse Matrix-Vector
Multiply

BLAS 1

Apply Preconditioner

Preconditioned

Conjugate gradient

solver

BLAS 1
BLAS 1

BLAS 1
BLAS 1

BLAS 1

11

Results

 Runtime went down from 1 minute to 1.8 seconds

• The original serial implementation is C++ code compiled and autovectorized using ICC running on a single
thread of CPU

• The parallel implementation uses CUDA and runs on Nvidia Fermi GPUs.

 Point tracker based on LDOF outperforms other trackers[3]

• 46 – 66% more accurate than other state-of-the-art techniques

 Better than other algorithms and runs efficiently!

12

Other trackers cannot
track the fast movement
of the leg

LDOF is able to
track fast movements

[3] Narayanan Sundaram, Thomas Brox, Kurt Keutzer, “Dense Point Trajectories by GPU-accelerated Large Displacement Optical
Flow”, European Conference on Computer Vision (ECCV), September 2010

Integration in Parlab
stack

 The sparse linear solver used in LDOF has
been ported to the Copperhead[3] framework

 We see huge productivity improvements with
70% of hand-coded performance c.f. Bryan’s
talk on Copperhead coming up next

13

[3] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an embedded data parallel language. PPoPP 2011

Preconditioned Conjugate Gradient

Getting the word out

• Work published at ECCV, 2010

• Available online since October 2010 at
http://www.eecs.berkeley.edu/~narayans/Software.ht
ml

• Downloaded 109 times so far and is being used in

• University of Freiburg

• nVidia

• Harvard University

• Georgia Tech

• and other places

14

http://eecs.berkeley.edu/~narayans/Software.html
http://eecs.berkeley.edu/~narayans/Software.html

What are the
applications that need

optical flow?

15

Video Object
Segmentation

Segment video

objects from a video

sequence

Useful for video

editing and video

understanding

Running on a GPU

cluster at NERSC

16

T
im

e

Video
aesthetics

Identify aesthetically

pleasing videos from

several views of the

same scene

(Data collection and

user study

underway)

17

Activity
recognition

Categorize complex

activities like sports

18

Summary

 We have designed & implemented superior optical flow
and tracking algorithms that are
More accurate

Faster

through numerical analysis, algorithmic exploration to
drastically improve its applicability

 Video applications are helping, and are in turn helped
by productivity frameworks

 We are applying our technology to a wide variety of
video processing tasks including video object
segmentation, aesthetics and action recognition

19

Thank You

Questions?

20

References
[1] T. Brox, J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. In IEEE Transactions on

Pattern Analysis and Machine Intelligence, to appear

[2] N. Sundaram, T. Brox, K. Keutzer. Dense Point Trajectories by GPU-accelerated Large Displacement Optical Flow. In European
Conference on Computer Vision (ECCV), September 2010

[3] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by GPU-accelerated large displacement optical flow. Technical
Report UCB/EECS-2010-104, EECS Department, University of California, Berkeley, Jul 2010.

[4] Sand, P., Teller, S.: Particle video: Long-range motion estimation using point trajectories. International Journal of Computer
Vision 80 (2008) 72–91

[5] Shi, J., Tomasi, C.: Good features to track. In: CVPR. (1994) 593–600

[6] Zach, C., Gallup, D., Frahm, J.M.: Fast gain-adaptive KLT tracking on the GPU. CVPR Workshop on Visual Computer Vision on
GPU’s (CVGPU) (2008)

[7] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an embedded data parallel language. Technical Report
UCB/EECS-2010-124, EECS Department, University of California, Berkeley, Sep 2010. Copperhead available at
http://code.google.com/p/copperhead

[8] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine training and classification on graphics processors. In
ICML ’08: Proceedings of the 25th international conference on Machine learning, pages 104–111, 2008.

21

http://code.google.com/p/copperhead

