
Eric Battenberg and David WesselEric Battenberg and David Wessel

Universal Parallel Computing Research Center
The Center for New Music and Audio Technologies

University of California, Berkeley

Microsoft Parallel Applications Workshop 28, 29 May 2009

Range of Apps
Hundreds of apps and plug-ins

Performance/Composition

Music Information RetrievalMusic Information Retrieval

Hearing Augmentation

for Music

3D Sound:

Speaker/Microphone Arrays

2

In this talk…
� Background on music applications

� Insights into music and parallel computing

� Organizing Apps with Parallel Design Patterns� Organizing Apps with Parallel Design Patterns

� Case study

� Parallelizing drum track extraction on OpenMP and CUDA

� Brainstorm

� The future of performance and retrieval

3

Music Performance and

Composition
� Novel musical interfaces allow for accessible and

interesting performances.

Tablo
Designed by Adrian Freed

Multi-Touch Array
Designed by David Wessel, Adrian Freed,

Rimas Avizienis, and Matthew Wright

Reactable
Designed by Sergi Jordà, Marcos Alonso,

Martin Kaltenbrunner and Günter Geiger

4

Music Performance and

Composition
� It is becoming common for amateur musicians to create

professional-quality music in a “home studio” or Digital
Audio Workstation

� DAW = � DAW =

+ +

Personal computer Sound card/mixer Audio editing software

5

Music Performance and

Composition
� The power of audio editing/processing software lies in its extensibility via

plug-ins.
� In an audio processing chain, plug-ins can be composed in a task-parallel

matter.
� When composed:

� Are they thread safe?� Are they thread safe?
� Will they cause catastrophic performance conflicts?
� Will they appropriately share hardware resources with other programs?

Audio plug-ins 6

Partitioning Hardware Resources
� What do we need from the OS?

� Tesselation: low-level resource allocation

� For music, we also need timing/deadline
guarantees for real-time performance/processingguarantees for real-time performance/processing

� What do we do with the allocated resources?

� Naïve composition of computational kernels can
destroy performance.

� Lithe: Second-level application-aware low-level
resource partitioning.

7

Music is inherently very parallel
� Multiple tracks, lines, voices, parts, channels, etc.

But audio synchronization and
timing are very important in
parallel music apps.parallel music apps.

8

Audio Synchronization/Timing
� The ear is very sensitive to timing.

� If tasks are processed on separate cores, delays can be
introduced.

� If these delays are not compensated for, the sound quality
can be adversely affected.
If these delays are not compensated for, the sound quality
can be adversely affected.

� Examples:
� Musical piece played without any delay

� Same piece with a copy added that is delayed by 1ms.
� We get a “combing” effect in the frequency domain.

No delay

1ms delay

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-20

-15

-10

-5

0

freq [Hz]

m
a
g
n
it
u
d
e
 r
e
s
p
o
n
s
e

frequency response due to adding a copy delayed by 1ms

9

Open Sound Control (OSC)
a way to achieve synchronization

� Communication protocol to share musical data over a
network.

� Symbolic and high-resolution numeric argument data

� Pattern matching language to specify multiple � Pattern matching language to specify multiple
recipients of a single message

� High resolution time tags for sub-sample accurate
synchronization

� "Bundles" of messages whose effects must occur
simultaneously (atomic updates)

10

MIR Apps

� Music Information Retrieval, “Machine Listening”, “Music Understanding”

� Transcription - Automatically generate a score or tablature from audio

� Source separation - Isolate certain instruments (including the singer)

� Similarity, Playlist creation, content discovery

� Automatically generate a playlist to fit a mood or based on song similarity.� Automatically generate a playlist to fit a mood or based on song similarity.

� Artist, genre, mood classification or quantification

� Help organize a music archive

� Score Following, lyrics sync, beat tracking

� Useful for DJs, karaoke, music education, and automated accompaniment.

� Song Segmentation

� Partition song into discrete passages (verse, chorus, bridge) for individual
analysis

� The hope is that someday you will be able to query for music like this:

� “I like the drummer but can’t stand the singer. Find me something in the same
genre with drumming like this but with a singer that sounds more like John
Lennon.” 11

Case Study: Drum Track Extraction
� An example of source separation where the drum track is isolated.

� Useful in drum transcription, beat tracking, and rhythm analysis.

� Audio spectrogram is factorized into components using Non-negative Matrix Factorization (NMF).

� Components are classified using a Support Vector Machine (SVM).

� “Percussive” components are used to synthesize an audio drum track.

� NMF step is most computationally intensive.

� 80% of time in Matlab (18.5 sec of 23.1 sec total for 20 sec of audio)80% of time in Matlab (18.5 sec of 23.1 sec total for 20 sec of audio)

� We will parallelize NMF using OpenMP (for multi-core) and CUDA (for GPUs)

Spectral
Feature

Extraction
NMF

Component
Feature

Extraction

SVM
Classifier

Audio
Resynthesis

Input audio Spectrogram

Percussive

features

Time/frequency

components

Percussive

components

Drum track 12

Case Study: Drum Track Extraction

Audio examples (listen for drums in original)

Original

Drum Track

1 2 3

Spectral
Feature

Extraction
NMF

Component
Feature

Extraction

SVM
Classifier

Audio
Resynthesis

Input audio Spectrogram

Percussive

features

Time/frequency

components

Percussive

components

Drum track

Drum Track

13

Case Study: Drum Track Extraction
� Use Non-negative Matrix Factorization

to separate an audio spectrogram into
sources.
(X = W*H)
� Here we see a spectrogram surrounded � Here we see a spectrogram surrounded

by its time (H) and frequency (W)
component matrices.
(3 sources).

� The time components in H are aligned
with the corresponding drum score.

14

Case Study: Drum Track Extraction
� NMF is the optimization problem:

� A cost function that works well for music:� A cost function that works well for music:
� Similar to Kullback-Leibler divergence

� Multiplicative gradient-based updates

15

Case Study: Drum Track Extraction
� For [512 x 30 x 3445] NMF,

� 512 frequency components, 30 sources, 3445 time frames (~20 sec)

� For each iteration we have:
� 423 Mflops of SGEMMs (Single-precision General Matrix Multiply)

� 3.6 Mflops of element-divides (slow)
0.1 Mflops element-multiplies� 0.1 Mflops element-multiplies

� 0.1 Mflops sums (requires communication)

� Also:
� Add a small constant to divisor matrices to prevent divide-by-zero.

(Add EPS, 3.6 Mflops)
� Compute log-based cost function every 25 iterations to check for

convergence.

16

Organizing Parallel Apps
� How can we organize the design of our applications?

� How can we best communicate our development
process and computing demands to other applications process and computing demands to other applications
experts?

17

Parallel Design Patterns
� Application developers are starting to adopt HPC jargon since

science has been using parallel computing for decades.

� The Par Lab, led by Tim Mattson and Kurt Keutzer, is developing
a parallel pattern language, OPL.

� OPL is hierarchical
� Higher-level patterns rely on

the details contained in lower-
level patterns

� Purpose of parallel pattern
language.
� Education about best practices
� Common terminology
� Guides the design process.

18

Parallel Design Patterns
� Example design pattern decomposition for CUDA implementation of NMF
� The pattern language helps us organize our code.
� Each design pattern is described in a document, outlining best practices and giving pointers to helpful resources.

W

SGEMM Element-
divide

Element-
add SGEMM

Column
sums

Element
-divide

Element-
mult

H

X

W

Pipe-and-Filter

Dense Linear
Algebra Graph Algorithms

Data Parallel Geometric
Decomposition

Distributed Array SPMD

SIMD Coll. Sync

Data Parallel Recursive Splitting

Distributed Array SPMD

SIMD Coll. Sync

Map-Reduce

Data Parallel

Strict Data Parallel

SIMD

SGEMMs Sums Element-wise

arithmetic

19

OpenMP (the easy stuff)

� Data-parallel for loop
� To be used for element-wise arithmetic
� Create team of nt threads to do independent chunks of work

� Reduction
� For sums
� Create team of nt threads to compute partial sums
� Then add the partial sums to final variable s

20

OpenMP (the easy stuff)

� We use MKL for SGEMMs

� Use OpenMP for other routines

� Performance scaling on dual-socket Core i7 920:

� SGEMMs show most significant
speedup
� Highest work to communication

ratio
� Non-linear speedup suggests this won’t

scale well to more cores using this
architecture and programming model.

� However,
� >7x speedup compared to Matlab
� >4x speedup compared to

sequential C

21

� CUDA is used to program Nvidia GPUs for general computation.

� GPU code is executed by many threads independently in a SPMD manner.

� Threads grouped into a thread block can share memory.

� Threads are physically executed in groups of 32, called warps.
� If all threads within a warp do the same thing, we get SIMD.

� Below we see a kernel definition and invocation for vector addition.
� Kernel is invoked with B blocks of N threads.

CUDA (some harder stuff)

� Kernel is invoked with B blocks of N threads.

� Each thread operates on one element of each array.

� The element index is computed from the thread ID, block ID, and block size
corresponding to the running thread.

22

� NMF Implementation in CUDA
� SGEMMs – use CUBLAS 2.1, achieves 60% of peak (373 GFLOPS on GTX 280)

� Padding matrices to multiples of 32 reduces SGEMM running time by 26%

� Element-wise arithmetic – similar to example code
� Reductions (sums) – a lot harder in CUDA than OpenMP

� Use optimizations covered in CUDA SDK for shared memory reduction.
Reorganize binary tree traversal.

CUDA (some harder stuff)

� Reorganize binary tree traversal.
� Loop unrolling, multiple reads per thread.

� Run the 30 sums concurrently. An important optimization.

23
increasing optimization

57x speedup overall

CUDA vs. OpenMP
� CUDA achieves much higher performance on current GPUs for highly data-

parallel computations. (>30x speedup compared to Matlab, 4x faster than
OpenMP+Nehalem)

� OpenMP can achieve multi-core speedup on data-parallel computations with
very little programmer effort.

� If inter-thread communication is required, things become much more difficult.
� OpenMP gets harder.

� CUDA gets a lot harder.� CUDA gets a lot harder.

� For music application developers,
CUDA is only feasible for
computational kernels that require
very high performance. What about
latency of going to GPU and back?

� We will be releasing Python modules
based on these implementations.

� Can be used for general NMF as well.

24

An idea for the future:

Analysis/Performance Hybrid
� Combine MIR analysis on a database of music in the

cloud with audio synthesis techniques to create
custom music controlled by gestural processing and
personal preferences.personal preferences.

� Automatic Mash-ups/Remixes.

� Gestural music selection (e.g. at a party)

� As little or as much interaction as desired.

� Can be used in music performance or just for
interactive listening.

25

Brainstorm:

Interactive Musical Experience

Music
Information

Retrieval

Audio
Database

Personal

Sensors +
Gestural

Processing

User
Input

Audio Synthesis
/Playback

Personal
Preference +
Collaborative

Filtering

Controller

26Multi-touch interface

Wrap
� There are tons of music applications.

� For both music fans and musicians.

� Parallel computing enables new music applications

But synchronization and real-time are important.� But synchronization and real-time are important.

� Parallel design patterns are useful for communicating
ideas and organizing code.

� Questions?

27

