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Range of Apps
Hundreds of apps and plug-ins

Performance/Composition

Music Information RetrievalMusic Information Retrieval

Hearing Augmentation 

for Music

3D Sound: 

Speaker/Microphone Arrays
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In this talk…
� Background on music applications

� Insights into music and parallel computing

� Organizing Apps with Parallel Design Patterns� Organizing Apps with Parallel Design Patterns

� Case study

� Parallelizing drum track extraction on OpenMP and CUDA

� Brainstorm 

� The future of performance and retrieval
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Music Performance and 

Composition
� Novel musical interfaces allow for accessible and 

interesting performances.

Tablo
Designed by Adrian Freed

Multi-Touch Array
Designed by David Wessel, Adrian Freed, 

Rimas Avizienis, and Matthew Wright

Reactable
Designed by Sergi Jordà, Marcos Alonso, 

Martin Kaltenbrunner and Günter Geiger
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Music Performance and 

Composition
� It is becoming common for amateur musicians to create 

professional-quality music in a “home studio” or Digital 
Audio Workstation 

� DAW    = � DAW    = 

+ +

Personal computer Sound card/mixer Audio editing software
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Music Performance and 

Composition
� The power of audio editing/processing software lies in its extensibility via 

plug-ins. 
� In an audio processing chain, plug-ins can be composed in a task-parallel 

matter. 
� When composed:

� Are they thread safe?� Are they thread safe?
� Will they cause catastrophic performance conflicts?
� Will they appropriately share hardware resources with other programs?

Audio plug-ins 6



Partitioning Hardware Resources
� What do we need from the OS? 

� Tesselation: low-level resource allocation

� For music, we also need timing/deadline 
guarantees for real-time performance/processingguarantees for real-time performance/processing

� What do we do with the allocated resources?

� Naïve composition of computational kernels can 
destroy performance.

� Lithe: Second-level application-aware low-level 
resource partitioning.
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Music is inherently very parallel
� Multiple tracks, lines, voices, parts, channels, etc.

But audio synchronization and 
timing are very important in 
parallel music apps.parallel music apps.

8



Audio Synchronization/Timing
� The ear is very sensitive to timing.

� If tasks are processed on separate cores, delays can be 
introduced. 

� If these delays are not compensated for, the sound quality 
can be adversely affected.
If these delays are not compensated for, the sound quality 
can be adversely affected.

� Examples:  
� Musical piece played without any delay

� Same piece with a copy added that is delayed by 1ms.
� We get a “combing” effect in the frequency domain.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-20

-15

-10

-5

0

freq [Hz]

m
a
g
n
it
u
d
e
 r
e
s
p
o
n
s
e

frequency response due to adding a copy delayed by 1ms

9



Open Sound Control (OSC)
a way to achieve synchronization

� Communication protocol to share musical data over a 
network.

� Symbolic and high-resolution numeric argument data

� Pattern matching language to specify multiple � Pattern matching language to specify multiple 
recipients of a single message

� High resolution time tags for sub-sample accurate 
synchronization

� "Bundles" of messages whose effects must occur 
simultaneously (atomic updates)
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MIR Apps

� Music Information Retrieval, “Machine Listening”, “Music Understanding”

� Transcription - Automatically generate a score or tablature from audio

� Source separation - Isolate certain instruments (including the singer)

� Similarity, Playlist creation, content discovery

� Automatically generate a playlist to fit a mood or based on song similarity.� Automatically generate a playlist to fit a mood or based on song similarity.

� Artist, genre, mood classification or quantification

� Help organize a music archive

� Score Following, lyrics sync, beat tracking 

� Useful for DJs, karaoke, music education, and automated accompaniment.

� Song Segmentation

� Partition song into discrete passages (verse, chorus, bridge) for individual 
analysis

� The hope is that someday you will be able to query for music like this:

� “I like the drummer but can’t stand the singer. Find me something in the same 
genre with drumming like this but with a singer that sounds more like John 
Lennon.” 11



Case Study: Drum Track Extraction
� An example of source separation where the drum track is isolated.

� Useful in drum transcription, beat tracking, and rhythm analysis. 

� Audio spectrogram is factorized into components using Non-negative Matrix Factorization (NMF).

� Components are classified using a Support Vector Machine (SVM).

� “Percussive” components are used to synthesize an audio drum track.

� NMF step is most computationally intensive. 

� 80% of time in Matlab (18.5 sec of 23.1 sec total for 20 sec of audio)80% of time in Matlab (18.5 sec of 23.1 sec total for 20 sec of audio)

� We will parallelize NMF using OpenMP (for multi-core) and CUDA (for GPUs)

Spectral 
Feature 

Extraction
NMF

Component 
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Extraction
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Audio 
Resynthesis
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Percussive 

features
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components

Percussive

components
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Case Study: Drum Track Extraction

Audio examples  (listen for drums in original)

Original

Drum Track

1 2 3
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Resynthesis
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Case Study: Drum Track Extraction
� Use Non-negative Matrix Factorization 

to separate an audio spectrogram into 
sources.   
(X = W*H)
� Here we see a spectrogram surrounded � Here we see a spectrogram surrounded 

by its time (H) and frequency (W)
component matrices. 
(3 sources).

� The time components in H are aligned 
with the corresponding drum score.
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Case Study: Drum Track Extraction
� NMF is the optimization problem:

� A cost function that works well for music:� A cost function that works well for music:
� Similar to Kullback-Leibler divergence

� Multiplicative gradient-based updates
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Case Study: Drum Track Extraction
� For [512 x 30 x 3445] NMF,

� 512 frequency components, 30 sources, 3445 time frames (~20 sec)

� For each iteration we have:
� 423 Mflops of SGEMMs (Single-precision General Matrix Multiply)

� 3.6 Mflops of element-divides (slow)
0.1 Mflops element-multiplies� 0.1 Mflops element-multiplies

� 0.1 Mflops sums (requires communication)

� Also:
� Add a small constant to divisor matrices to prevent divide-by-zero. 

(Add EPS, 3.6 Mflops)
� Compute log-based cost function every 25 iterations to check for 

convergence.
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Organizing Parallel Apps
� How can we organize the design of our applications?

� How can we best communicate our development 
process and computing demands to other applications process and computing demands to other applications 
experts?
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Parallel Design Patterns
� Application developers are starting to adopt HPC jargon since 

science has been using parallel computing for decades.

� The Par Lab, led by Tim Mattson and Kurt Keutzer, is developing 
a parallel pattern language, OPL.

� OPL is hierarchical
� Higher-level patterns rely on 

the details contained in lower-
level patterns

� Purpose of parallel pattern 
language.
� Education about best practices
� Common terminology
� Guides the design process.
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Parallel Design Patterns
� Example design pattern decomposition for CUDA implementation of NMF
� The pattern language helps us organize our code.
� Each design pattern is described in a document, outlining best practices and giving pointers to helpful resources.

W

SGEMM Element-
divide

Element-
add SGEMM

Column
sums

Element
-divide

Element-
mult

H
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Pipe-and-Filter

Dense Linear 
Algebra Graph Algorithms

Data Parallel Geometric 
Decomposition

Distributed Array SPMD

SIMD Coll. Sync

Data Parallel Recursive Splitting

Distributed Array SPMD

SIMD Coll. Sync

Map-Reduce

Data Parallel

Strict Data Parallel

SIMD

SGEMMs Sums Element-wise 

arithmetic
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OpenMP (the easy stuff)

� Data-parallel for loop
� To be used for element-wise arithmetic
� Create team of nt threads to do independent chunks of work

� Reduction 
� For sums
� Create team of nt threads to compute partial sums
� Then add the partial sums to final variable   s

20



OpenMP (the easy stuff)

� We use MKL for SGEMMs

� Use OpenMP for other routines

� Performance scaling on dual-socket Core i7 920: 

� SGEMMs show most significant 
speedup
� Highest work to communication 

ratio
� Non-linear speedup suggests this won’t 

scale well to more cores using this 
architecture and programming model.

� However,
� >7x speedup compared to Matlab
� >4x speedup compared to 

sequential C
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� CUDA is used to program Nvidia GPUs for general computation.

� GPU code is executed by many threads independently in a SPMD manner.

� Threads grouped into a thread block can share memory.

� Threads are physically executed in groups of 32, called warps.
� If all threads within a warp do the same thing, we get SIMD.

� Below we see a kernel definition and invocation for vector addition.
� Kernel is invoked with B blocks of N threads.

CUDA (some harder stuff)

� Kernel is invoked with B blocks of N threads.

� Each thread operates on one element of each array.

� The element index is computed from the thread ID, block ID, and block size 
corresponding to the running thread. 
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� NMF Implementation in CUDA
� SGEMMs – use CUBLAS 2.1, achieves 60% of peak (373 GFLOPS on GTX 280)

� Padding matrices to multiples of 32 reduces SGEMM running time by 26%

� Element-wise arithmetic – similar to example code
� Reductions (sums) – a lot harder in CUDA than OpenMP

� Use optimizations covered in CUDA SDK for shared memory reduction.
Reorganize binary tree traversal.

CUDA (some harder stuff)

� Reorganize binary tree traversal.
� Loop unrolling, multiple reads per thread.

� Run the 30 sums concurrently.  An important optimization.    

23
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CUDA vs. OpenMP
� CUDA achieves much higher performance on current GPUs for highly data-

parallel computations. (>30x speedup compared to Matlab, 4x faster than 
OpenMP+Nehalem)

� OpenMP can achieve multi-core speedup on data-parallel computations with 
very little programmer effort.

� If inter-thread communication is required, things become much more difficult.
� OpenMP gets harder.

� CUDA gets a lot harder.� CUDA gets a lot harder.

� For music application developers, 
CUDA is only feasible for 
computational kernels that require 
very high performance. What about 
latency of going to GPU and back?

� We will be releasing Python modules 
based on these implementations. 

� Can be used for general NMF as well.
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An idea for the future:

Analysis/Performance Hybrid
� Combine MIR analysis on a database of music in the 

cloud with audio synthesis techniques to create 
custom music controlled by gestural processing and 
personal preferences.personal preferences.

� Automatic Mash-ups/Remixes.

� Gestural music selection (e.g. at a party)

� As little or as much interaction as desired.

� Can be used in music performance or just for 
interactive listening.
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Brainstorm:

Interactive Musical Experience

Music 
Information 

Retrieval

Audio 
Database

Personal 

Sensors + 
Gestural 

Processing

User 
Input

Audio Synthesis
/Playback

Personal 
Preference + 
Collaborative 

Filtering

Controller
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Wrap
� There are tons of music applications.

� For both music fans and musicians.

� Parallel computing enables new music applications

But synchronization and real-time are important.� But synchronization and real-time are important.

� Parallel design patterns are useful for communicating 
ideas and organizing code.

� Questions?
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