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• Parallel: More difficult than sequential 

– Simultaneous reasoning about functional correctness 

and nondeterministic thread interleavings 
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Our challenge: Simplify testing and 
verification of parallel programs 

Parallel 

program 

Functional 

specification 
Satisfies? 

All behaviors allowed 

by specification 
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Our goal: Decompose efforts in addressing 
parallelism and functional correctness 

Parallel 

program 

Functional 

specification 
Satisfies? 

Parallel 

program 

Functional 

specification 

Nondeterministic 

sequential 

specification 
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Our goal: Decompose efforts in addressing 
parallelism and functional correctness 

Functional correctness. 

Reason about 

sequentially without 

thread interleavings. 

Parallel 

program 

Functional 

specification 

Nondeterministic 

sequential 

specification 
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Our goal: Decompose efforts in addressing 
parallelism and functional correctness 

Functional correctness. 

Reason about 

sequentially without 

thread interleavings. 

Parallelism correctness. 

Prove independently of 

complex & sequential 

functional properties. 
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Parallel 

program 

Functional 

specification 

Nondeterministic 

sequential 

specification 
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Our approach: Nondeterministic sequential  
(NDSeq) specifications 
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Parallel 

program 

Functional 

specification 

Nondeterministic 

sequential 

specification 

In this talk (on  a running example): 

1. Easy-to-write, lightweight specification 

• Few simple annotations to indicate intended 

nondeterminism (nd-foreach, if(*)) 
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Our approach: Nondeterministic sequential  
(NDSeq) specifications 
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Parallel 

program 

Functional 

specification 

Nondeterministic 

sequential 

specification 

In this talk (on  a running example): 

1. Easy-to-write, lightweight specification 

• Few simple annotations to indicate intended 

nondeterminism (nd-foreach, if(*)) 

2. Runtime checking algorithm for testing 

• Improves traditional technique using annotations 
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Example: Simple branch-and-bound 
Goal: Find minimum-cost solution 

Sequential program: 

Single 
thread 

i=1 

i=2 

i=N-1 
i=N 

foreach i in [1..N] 

    s = search(i) 

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

Search space 

Initially: lowest_cost =  

Outputs:  

Best solution: best_soln 

Minimum cost: lowest_cost 
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Example: Simple branch-and-bound 
Goal: Find minimum-cost solution 

i=1 

i=2 

i=N-1 
i=N 

Multiple 
threads 

coforeach i in [1..N] 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 

lowest_cost and best_soln 

are global to all threads 

Search space 

Parallel program: 

Initially: lowest_cost =  
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Example: Simple branch-and-bound 
Goal: Find minimum-cost solution 

Functional correctness: 

As difficult to prove 

as sequential. 

 

PLUS thread 

interleavings. 

assert ( cost(best_soln) is lowest_cost and 
                                               minimum in search space ) 

coforeach i in [1..N] 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 

Parallel program: 

Initially: lowest_cost =  
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Our goal 

Parallel 

program 

Functional 

specification 

(assertion) 
Satisfies? 



Much easier  

No parallel 

threads! 
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Our approach 

Parallel 

program 

Functional 

specification 

(assertion) 

Nondeterministic 

sequential 

specification 



Parallel 

program 
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Our approach 
Correct parallelism: For each interleaved behavior of 

parallel program, exists a sequential behavior of NDSeq 

specification giving the same result. 

  Independently of functional correctness. 

Functional 

specification 

(assertion) 

Nondeterministic 

sequential 

specification 



coforeach i in [1..N] 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 

foreach i in [1..N] 

    s = search(i) 

    

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 
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Parallel program: NDSeq specification: 
Satisfies? 

Our approach 
Correct parallelism: For each interleaved behavior of 

parallel program, exists a sequential behavior of NDSeq 

specification giving the same result. 

  Independently of functional correctness. 
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Parallel program = NDSeq spec ? 

 cost(s1): 5  cost(s2): 5 (1) (2) 
Search 
space: 

Initially: 
lowest_cost =  
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Parallel program = NDSeq spec ? 

 cost(s1): 5  cost(s2): 5 (1) (2) 
Search 
space: 

Initially: 
lowest_cost =  

Time 

Result: best_soln = s1 

search(1) 

best_soln = s1 

search(2) 

// no update 

Only possible 
sequential execution 



 cost(s1): 5  cost(s2): 5 (1) (2) 
Search 
space: 
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Parallel program = NDSeq spec ? 

Initially: 
lowest_cost =  

Result: best_soln = s2 

search(2) 

best_soln = s2 

search(1) 

// no update 

A parallel execution 
(no equivalent sequential execution) 

Result: best_soln = s1 

search(1) 

best_soln = s1 

search(2) 

// no update 

Only possible 
sequential execution 

≠ 

Thread 2 

Thread 1 

Time 



 cost(s1): 5  cost(s2): 5 (1) (2) 
Search 
space: 
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Parallel program ≠ NDSeq spec 

Initially: 
lowest_cost =  

NDSeq specification too strict ! 

• Must allow to choose different optimal solutions 

Result: best_soln = s2 

search(2) 

best_soln = s2 

search(1) 

// no update 

A parallel execution 
(no equivalent sequential execution) 

Result: best_soln = s1 

search(1) 

best_soln = s1 

search(2) 

// no update 

Only possible 
sequential execution 

Thread 2 

Thread 1 

Time 



                    i in [1..N] 

    s = search(i) 

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 
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Introducing nondeterminism sequentially 

foreach i in [1..N] 

    s = search(i) 

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

Programmer annotates loop: 

• Allow sequential code to perform 

iterations in nondeterministic order. 

NDSeq specification: New NDSeq specification 



                    i in [1..N] 

    s = search(i) 

     

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 

NDSeq specification: 
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Parallel program = NDSeq spec 

coforeach i in [1..N] 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 

Parallel program: 

Satisfies! 

NDSeq specification gives same results as 

parallel program! 

• With only one thread! 



coforeach i in [1..N] 

    b = lower_bound(i) 

    if b >= lowest_cost 

        end_iteration 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 
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Example with optimization code 

Expensive ! 

Cheap ! 

Prune if search is 

redundant 

Parallel program: 
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Parallel program = NDSeq spec 

coforeach i in [1..N] 

    b = lower_bound(i) 

    if b >= lowest_cost 

        end_iteration 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 

NDSeq specification: 

Satisfies!                    i in [1..N] 

    b = lower_bound(i) 

    if b >= lowest_cost 

        end_iteration 

    s = search(i) 

     

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 

Parallel program: 



Parallel program: 

coforeach i in [1..N] 

    b = lower_bound(i) 

    if b >= lowest_cost 

        end_iteration 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 

NDSeq specification: 

                   i in [1..N] 

    b = lower_bound(i) 

    if b >= lowest_cost 

        end_iteration 

    s = search(i) 

     

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 
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Parallel program = NDSeq spec ? 

  What if search(i) has side effect on functionality? 

Satisfies? 
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Parallel program = NDSeq spec ? 
Initially: 
lowest_cost =  

 cost(s1): 5 
 bound: 5 

 cost(s2): 5 
 bound: 5 

(1) (2) 
Search 
space: 

A parallel execution 

lower_bound(1) 

lower_bound(2) 

search(2) 

lowest_cost = 5 

search(1) 

// no update 

Redundant 

search with 

side effect 

Decides to 

do search(1) 

Thread 1 

Thread 2 

Thread 1 

Time 

Updates 

lowest_cost 
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Parallel program = NDSeq spec ? 

lower_bound(2) 

search(2) 

lowest_cost = 5 

lower_bound(1) 

// no search 

Initially: 
lowest_cost =  

 cost(s1): 5 
 bound: 5 

 cost(s2): 5 
 bound: 5 

(1) (2) 
Search 
space: 

Time 

Only possible sequential executions 

lower_bound(1) 

search(1) 

lowest_cost = 5 

lower_bound(2) 

// no search 

A parallel execution 

lower_bound(1) 

lower_bound(2) 

search(2) 

lowest_cost = 5 

search(1) 

// no update 
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Parallel program ≠ NDSeq spec 
Initially: 
lowest_cost =  

 cost(s1): 5 
 bound: 5 

 cost(s2): 5 
 bound: 5 

(1) (2) 
Search 
space: 

NDSeq specification too strict ! 

• Must allow to NOT prune a redundant search 

lower_bound(2) 

search(2) 

lowest_cost = 5 

lower_bound(1) 

// no search 

Time 
lower_bound(1) 

search(1) 

lowest_cost = 5 

lower_bound(2) 

// no search 

lower_bound(1) 

lower_bound(2) 

search(2) 

lowest_cost = 5 

search(1) 

// no update 

A parallel execution Only possible sequential executions 



                   i in [1..N] 

    b = lower_bound(i) 

 

          if b >= lowest_cost 

              end_iteration 

    s = search(i) 

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 

if (   ) *  
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Expressing nondeterminism sequentially 

NDSeq specification: New NDSeq specification: 

*  Programmer adds if (*)   

                   i in [1..N] 

    b = lower_bound(i) 

 

    if b >= lowest_cost 

        end_iteration 

    s = search(i) 

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 



                   i in [1..N] 

    b = lower_bound(i) 

 

          if b >= lowest_cost 

              end_iteration 

    s = search(i) 

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 

if (   ) *  

New NDSeq specification: 
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Expressing nondeterminism sequentially 

* 
: Pick true or false 

nondeterministically! 
*  

Programmer asserts: 

Skipping body of if(*) 

is safe for functionality  

(it is optimization) 



                   i in [1..N] 

    b = lower_bound(i) 

 

          if b >= lowest_cost 

              end_iteration 

    s = search(i) 

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 

if (   ) *  

New NDSeq specification: 
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Expressing nondeterminism sequentially 

Assign 
false 

New NDSeq execution 

lower_bound(2) 

search(2) 

lowest_cost = 5 

lower_bound(1) 

search(1) 

// no update 

* 
: Pick true or false 

nondeterministically! 
*  

Time 

Redundant 

search with 

side effect 



                   i in [1..N] 

    b = lower_bound(i) 

 

          if b >= lowest_cost 

              end_iteration 

    s = search(i) 

     

    if cost(s) < lowest_cost 

        lowest_cost = cost(s) 

        best_soln = s 

nd-foreach 

if (   ) *  
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Parallel program = NDSeq specification 

Parallel program: 

coforeach i in [1..N] 

    b = lower_bound(i) 

 

    if b >= lowest_cost 

        end_iteration 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 

NDSeq specification: 
Satisfies! 
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Embedding NDSeq spec. in parallel program 
 

                          i in [1..N] 

    b = lower_bound(i) 

            

           if b >= lowest_cost 

               end_iteration 

    s = search(i) 

    synchronized_by(lock) 

        if cost(s) < lowest_cost 

            lowest_cost = cost(s) 

            best_soln = s 

nd-coforeach 

if (   ) *
  

if (true) 

by default 



32 

Our approach: Nondeterministic sequential  
(NDSeq) specifications 
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Parallel 

program 

Functional 

specification 

Nondeterministic 

sequential 

specification 

In this talk: 

1. Easy-to-write, lightweight specification 

• Few simple annotations to indicate intended 

nondeterminism (nd-foreach, if(*)) 

2. Runtime checking algorithm for testing 

• Improves traditional technique using annotations 



Traditional conflict serializability 
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A serialized thread 

Initial 

State s0 

Initial 

State s0 

Final 

State s1 

Final 

State s1 

interleaved execution 

equivalent, serialized execution 
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Problem with traditional conflict 
serializability 

s1 = search(1) 

if cost(s1) < lowest_cost 

    // no update 

Thread 1 

b = lower_bound(1) 

           // Default: if(true) 

      if b >= lowest_cost 

if (   )  * 

...... 

 

  lowest_cost = cost(s2) 

 

...... 

(Time) 

Thread 2 

? ? 



s1 = search(1) 

if cost(s1) < lowest_cost 

    // no update 

Thread 1 

b = lower_bound(1) 

           // Default: if(true) 

      if b >= lowest_cost 

if (   )  * 

...... 

 

  lowest_cost = cost(s2) 

 

...... 

(Time) 

Thread 2 

35 

Problem with traditional conflict 
serializability 

Conflict 

Conflict Not serializable! 

Cycle of conflict 

edges 



s1 = search(1) 

if cost(s1) < lowest_cost 

    // no update 

Thread 1 

b = lower_bound(1) 

           // Default: if(true) 

      if b >= lowest_cost 

if (   )  * 

...... 

 

  lowest_cost = cost(s2) 

 

...... 

(Time) 

Thread 2 

Not serializable! 

Cycle of conflict 

edges 
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Problem with traditional conflict 
serializability 

Conflict 

Conflict 

Can we flip * to false? 

 

Check: Does body have 

any side effect on  

the rest of execution? 



s1 = search(1) 

if cost(s1) < lowest_cost 

    // no update 

Thread 1 

b = lower_bound(1) 

           // Resolve: if(false) 

      if b >= lowest_cost 

if (   )  * 

...... 

 

  lowest_cost = cost(s2) 

 

...... 

(Time) 

Thread 2 
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Using if(*) to rule out false conflict 
1. Resolve * to false 

    Safe: Body has no dependent 

Serializable! 

Conflict 

Conflict 

2. Eliminated  

since the first access 

no longer exists 
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Traditional conflict serializability: 

Flipping * + traditional conflict serializability: 

Thread 2 

Thread 1 (a) 

Thread 1 (b) 

Thread 2 

Thread 1 (a) 

Thread 1 (b) 

Not serializable! 

Cycle of conflict 

edges 

Thread 2 

Thread 1 (a) 

Thread 1 (b) 

Thread 2 

Thread 1 (a’) 

Thread 1 (b) 

Thread 2 

Thread 1 (a’) 

Thread 1 (b) 

Flip * 



• Wrote and checked NDSeq specifications for: 

– Java Grande, Parallel Java, Lonestar, and  

nonblocking data structures 

• Size: 40 to 4K lines of code 

• Two claims: 

1. Easy to write NDSeq specifications 

2. Our technique serialize significantly more 
executions than traditional methods 
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Experimental evaluation for Java 



Results 1 (Easy to write specs) 

Benchmark Line of code 
Number of 

parallel constructs 

Number of 
 if(*)  

series 800 1 0 

crypt 1.1K 2 0 

raytracer 1.9K 1 0 

montecarlo 3.6K 1 0 

pi3 150 1 0 

keysearch3 200 2 0 

mandelbrot 250 1 0 

phylogeny 4.4K 2 3 

stack 40 1 2 

queue 60 1 2 

meshrefine 1K 1 2 

Ja
va

 G
ra

n
d

e 
Pa

ra
lle

l J
av

a 
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Results 2 (No false alarms) 

Benchmark 
Size of 

execution trace 
Number of distinct warnings 

      Traditional    |    Our technique 

series 11k 0 0 

crypt 504K 0 0 

raytracer 6170K 1 1 (real bug) 

montecarlo 1897K 2 0 

pi3 1062K 0 0 

keysearch3 2059K 0 0 

mandelbrot 1707K 0 0 

phylogeny 470K 6 6 (real bug) 

stack 1744 5 0 

queue 868 9 0 

meshrefine 747K 30 0 

Ja
va

 G
ra

n
d

e 
Pa

ra
lle

l J
av

a 
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• Key idea: Specify parallelism correctness using 

sequential but nondeterministic version of program. 

• Lightweight annotations (nd-foreach, if (*)): Specify 

various kinds of intended nondeterminism 

– Without parallel threads and functional specification. 

• Novel runtime checking algorithm 

– Traditional conflict serializability + Flipping if (*)’s 
42 

Summary 
 

Parallel 

program 

Functional 

specification 

NDSeq 

program/spec 

Functional 

correctness 

Parallelism  

correctness 


