
Berkeley Parlab

NDSeq: Specifying and Checking
Parallelism Correctness Using

Nondeterministic Sequential Programs

Jacob Burnim, Tayfun Elmas*

George Necula, Koushik Sen

University of California, Berkeley

• Parallel: More difficult than sequential

– Simultaneous reasoning about functional correctness

and nondeterministic thread interleavings

2

Our challenge: Simplify testing and
verification of parallel programs

Parallel

program

Functional

specification
Satisfies?

All behaviors allowed

by specification

3

Our goal: Decompose efforts in addressing
parallelism and functional correctness

Parallel

program

Functional

specification
Satisfies?

Parallel

program

Functional

specification

Nondeterministic

sequential

specification

4

Our goal: Decompose efforts in addressing
parallelism and functional correctness

Functional correctness.

Reason about

sequentially without

thread interleavings.

Parallel

program

Functional

specification

Nondeterministic

sequential

specification

5

Our goal: Decompose efforts in addressing
parallelism and functional correctness

Functional correctness.

Reason about

sequentially without

thread interleavings.

Parallelism correctness.

Prove independently of

complex & sequential

functional properties.

5

Parallel

program

Functional

specification

Nondeterministic

sequential

specification

6

Our approach: Nondeterministic sequential
(NDSeq) specifications

6

Parallel

program

Functional

specification

Nondeterministic

sequential

specification

In this talk (on a running example):

1. Easy-to-write, lightweight specification

• Few simple annotations to indicate intended

nondeterminism (nd-foreach, if(*))

7

Our approach: Nondeterministic sequential
(NDSeq) specifications

7

Parallel

program

Functional

specification

Nondeterministic

sequential

specification

In this talk (on a running example):

1. Easy-to-write, lightweight specification

• Few simple annotations to indicate intended

nondeterminism (nd-foreach, if(*))

2. Runtime checking algorithm for testing

• Improves traditional technique using annotations

8

Example: Simple branch-and-bound
Goal: Find minimum-cost solution

Sequential program:

Single
thread

i=1

i=2

i=N-1
i=N

foreach i in [1..N]

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

Search space

Initially: lowest_cost =

Outputs:

Best solution: best_soln

Minimum cost: lowest_cost

9

Example: Simple branch-and-bound
Goal: Find minimum-cost solution

i=1

i=2

i=N-1
i=N

Multiple
threads

coforeach i in [1..N]

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

lowest_cost and best_soln

are global to all threads

Search space

Parallel program:

Initially: lowest_cost =

10

Example: Simple branch-and-bound
Goal: Find minimum-cost solution

Functional correctness:

As difficult to prove

as sequential.

PLUS thread

interleavings.

assert (cost(best_soln) is lowest_cost and
 minimum in search space)

coforeach i in [1..N]

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

Parallel program:

Initially: lowest_cost =

11

Our goal

Parallel

program

Functional

specification

(assertion)
Satisfies?

Much easier

No parallel

threads!

12

Our approach

Parallel

program

Functional

specification

(assertion)

Nondeterministic

sequential

specification

Parallel

program

13

Our approach
Correct parallelism: For each interleaved behavior of

parallel program, exists a sequential behavior of NDSeq

specification giving the same result.

 Independently of functional correctness.

Functional

specification

(assertion)

Nondeterministic

sequential

specification

coforeach i in [1..N]

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

foreach i in [1..N]

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

14

Parallel program: NDSeq specification:
Satisfies?

Our approach
Correct parallelism: For each interleaved behavior of

parallel program, exists a sequential behavior of NDSeq

specification giving the same result.

 Independently of functional correctness.

15

Parallel program = NDSeq spec ?

 cost(s1): 5 cost(s2): 5 (1) (2)
Search
space:

Initially:
lowest_cost =

16

Parallel program = NDSeq spec ?

 cost(s1): 5 cost(s2): 5 (1) (2)
Search
space:

Initially:
lowest_cost =

Time

Result: best_soln = s1

search(1)

best_soln = s1

search(2)

// no update

Only possible
sequential execution

 cost(s1): 5 cost(s2): 5 (1) (2)
Search
space:

17

Parallel program = NDSeq spec ?

Initially:
lowest_cost =

Result: best_soln = s2

search(2)

best_soln = s2

search(1)

// no update

A parallel execution
(no equivalent sequential execution)

Result: best_soln = s1

search(1)

best_soln = s1

search(2)

// no update

Only possible
sequential execution

≠

Thread 2

Thread 1

Time

 cost(s1): 5 cost(s2): 5 (1) (2)
Search
space:

18

Parallel program ≠ NDSeq spec

Initially:
lowest_cost =

NDSeq specification too strict !

• Must allow to choose different optimal solutions

Result: best_soln = s2

search(2)

best_soln = s2

search(1)

// no update

A parallel execution
(no equivalent sequential execution)

Result: best_soln = s1

search(1)

best_soln = s1

search(2)

// no update

Only possible
sequential execution

Thread 2

Thread 1

Time

 i in [1..N]

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

19

Introducing nondeterminism sequentially

foreach i in [1..N]

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

Programmer annotates loop:

• Allow sequential code to perform

iterations in nondeterministic order.

NDSeq specification: New NDSeq specification

 i in [1..N]

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

NDSeq specification:

20

Parallel program = NDSeq spec

coforeach i in [1..N]

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

Parallel program:

Satisfies!

NDSeq specification gives same results as

parallel program!

• With only one thread!

coforeach i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

21

Example with optimization code

Expensive !

Cheap !

Prune if search is

redundant

Parallel program:

22

Parallel program = NDSeq spec

coforeach i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

NDSeq specification:

Satisfies! i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

Parallel program:

Parallel program:

coforeach i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

NDSeq specification:

 i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

23

Parallel program = NDSeq spec ?

 What if search(i) has side effect on functionality?

Satisfies?

24

Parallel program = NDSeq spec ?
Initially:
lowest_cost =

 cost(s1): 5
 bound: 5

 cost(s2): 5
 bound: 5

(1) (2)
Search
space:

A parallel execution

lower_bound(1)

lower_bound(2)

search(2)

lowest_cost = 5

search(1)

// no update

Redundant

search with

side effect

Decides to

do search(1)

Thread 1

Thread 2

Thread 1

Time

Updates

lowest_cost

25

Parallel program = NDSeq spec ?

lower_bound(2)

search(2)

lowest_cost = 5

lower_bound(1)

// no search

Initially:
lowest_cost =

 cost(s1): 5
 bound: 5

 cost(s2): 5
 bound: 5

(1) (2)
Search
space:

Time

Only possible sequential executions

lower_bound(1)

search(1)

lowest_cost = 5

lower_bound(2)

// no search

A parallel execution

lower_bound(1)

lower_bound(2)

search(2)

lowest_cost = 5

search(1)

// no update

26

Parallel program ≠ NDSeq spec
Initially:
lowest_cost =

 cost(s1): 5
 bound: 5

 cost(s2): 5
 bound: 5

(1) (2)
Search
space:

NDSeq specification too strict !

• Must allow to NOT prune a redundant search

lower_bound(2)

search(2)

lowest_cost = 5

lower_bound(1)

// no search

Time
lower_bound(1)

search(1)

lowest_cost = 5

lower_bound(2)

// no search

lower_bound(1)

lower_bound(2)

search(2)

lowest_cost = 5

search(1)

// no update

A parallel execution Only possible sequential executions

 i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

if () *

27

Expressing nondeterminism sequentially

NDSeq specification: New NDSeq specification:

* Programmer adds if (*)

 i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

 i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

if () *

New NDSeq specification:

28

Expressing nondeterminism sequentially

*
: Pick true or false

nondeterministically!
*

Programmer asserts:

Skipping body of if(*)

is safe for functionality

(it is optimization)

 i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

if () *

New NDSeq specification:

29

Expressing nondeterminism sequentially

Assign
false

New NDSeq execution

lower_bound(2)

search(2)

lowest_cost = 5

lower_bound(1)

search(1)

// no update

*
: Pick true or false

nondeterministically!
*

Time

Redundant

search with

side effect

 i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-foreach

if () *

30

Parallel program = NDSeq specification

Parallel program:

coforeach i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

NDSeq specification:
Satisfies!

31

Embedding NDSeq spec. in parallel program

 i in [1..N]

 b = lower_bound(i)

 if b >= lowest_cost

 end_iteration

 s = search(i)

 synchronized_by(lock)

 if cost(s) < lowest_cost

 lowest_cost = cost(s)

 best_soln = s

nd-coforeach

if () *

if (true)

by default

32

Our approach: Nondeterministic sequential
(NDSeq) specifications

32

Parallel

program

Functional

specification

Nondeterministic

sequential

specification

In this talk:

1. Easy-to-write, lightweight specification

• Few simple annotations to indicate intended

nondeterminism (nd-foreach, if(*))

2. Runtime checking algorithm for testing

• Improves traditional technique using annotations

Traditional conflict serializability

33

A serialized thread

Initial

State s0

Initial

State s0

Final

State s1

Final

State s1

interleaved execution

equivalent, serialized execution

34

Problem with traditional conflict
serializability

s1 = search(1)

if cost(s1) < lowest_cost

 // no update

Thread 1

b = lower_bound(1)

 // Default: if(true)

 if b >= lowest_cost

if () *

......

 lowest_cost = cost(s2)

......

(Time)

Thread 2

? ?

s1 = search(1)

if cost(s1) < lowest_cost

 // no update

Thread 1

b = lower_bound(1)

 // Default: if(true)

 if b >= lowest_cost

if () *

......

 lowest_cost = cost(s2)

......

(Time)

Thread 2

35

Problem with traditional conflict
serializability

Conflict

Conflict Not serializable!

Cycle of conflict

edges

s1 = search(1)

if cost(s1) < lowest_cost

 // no update

Thread 1

b = lower_bound(1)

 // Default: if(true)

 if b >= lowest_cost

if () *

......

 lowest_cost = cost(s2)

......

(Time)

Thread 2

Not serializable!

Cycle of conflict

edges

36

Problem with traditional conflict
serializability

Conflict

Conflict

Can we flip * to false?

Check: Does body have

any side effect on

the rest of execution?

s1 = search(1)

if cost(s1) < lowest_cost

 // no update

Thread 1

b = lower_bound(1)

 // Resolve: if(false)

 if b >= lowest_cost

if () *

......

 lowest_cost = cost(s2)

......

(Time)

Thread 2

37

Using if(*) to rule out false conflict
1. Resolve * to false

 Safe: Body has no dependent

Serializable!

Conflict

Conflict

2. Eliminated

since the first access

no longer exists

38

Traditional conflict serializability:

Flipping * + traditional conflict serializability:

Thread 2

Thread 1 (a)

Thread 1 (b)

Thread 2

Thread 1 (a)

Thread 1 (b)

Not serializable!

Cycle of conflict

edges

Thread 2

Thread 1 (a)

Thread 1 (b)

Thread 2

Thread 1 (a’)

Thread 1 (b)

Thread 2

Thread 1 (a’)

Thread 1 (b)

Flip *

• Wrote and checked NDSeq specifications for:

– Java Grande, Parallel Java, Lonestar, and

nonblocking data structures

• Size: 40 to 4K lines of code

• Two claims:

1. Easy to write NDSeq specifications

2. Our technique serialize significantly more
executions than traditional methods

39

Experimental evaluation for Java

Results 1 (Easy to write specs)

Benchmark Line of code
Number of

parallel constructs

Number of
 if(*)

series 800 1 0

crypt 1.1K 2 0

raytracer 1.9K 1 0

montecarlo 3.6K 1 0

pi3 150 1 0

keysearch3 200 2 0

mandelbrot 250 1 0

phylogeny 4.4K 2 3

stack 40 1 2

queue 60 1 2

meshrefine 1K 1 2

Ja
va

 G
ra

n
d

e
Pa

ra
lle

l J
av

a

40

Results 2 (No false alarms)

Benchmark
Size of

execution trace
Number of distinct warnings

 Traditional | Our technique

series 11k 0 0

crypt 504K 0 0

raytracer 6170K 1 1 (real bug)

montecarlo 1897K 2 0

pi3 1062K 0 0

keysearch3 2059K 0 0

mandelbrot 1707K 0 0

phylogeny 470K 6 6 (real bug)

stack 1744 5 0

queue 868 9 0

meshrefine 747K 30 0

Ja
va

 G
ra

n
d

e
Pa

ra
lle

l J
av

a

41

• Key idea: Specify parallelism correctness using

sequential but nondeterministic version of program.

• Lightweight annotations (nd-foreach, if (*)): Specify

various kinds of intended nondeterminism

– Without parallel threads and functional specification.

• Novel runtime checking algorithm

– Traditional conflict serializability + Flipping if (*)’s
42

Summary

Parallel

program

Functional

specification

NDSeq

program/spec

Functional

correctness

Parallelism

correctness

