An Efficient, High Quality Object Recognition System

Bor-Yiing Su, Tasneem Brutch, Kurt Keutzer

Object Recognition

- **Input Image**
- **Trained Categories**
- **Image Queries**
- **Outputs**
- **Object Recognition System**

Training and Classification

- **Distance computation**
 - \(I \) has regions \(r_1, r_2, ..., r_L \)
 - \(J \) has regions \(r'_1, r'_2, ..., r'_L \)
 - \(D(I \rightarrow J) = w_1d_1 + w_2d_2 + ... + w_Ld_L \)
 - \(w_i \): the weight of \(r'_i \)
 - \(d = \min(d(r'_i, r_j)) \)

- **Weight learning**
 - Formulate to a large-margin opt. problem
 - Identify representative regions in an image
 - \[
 \begin{align*}
 &\max \frac{1}{2} \sum_{i} \left(w_i y_i \right)^2 + \sum_{i} \xi_i \sum_{j \neq i} y_i y_j d_{ij}^m \geq 1 - \xi_i, \forall i = 1, 2, ..., T \\
 &\sum_{i} w_i (d_{ij}^m - d_{ij}^p) \geq \frac{1}{2} \xi_i, \forall i = 1, 2, ..., T \\
 &\xi_i \geq 0, \forall i = 1, 2, ..., T
 \end{align*}
 \]

- **Hough Voting**
 - Consider the weights of regions of exemplars
 - Generate hypotheses of bounding boxes and possible categories
 - Cluster the bounding box guesses by the mean shift algorithm

Experimental Results

- **Detection Quality**
 - Speedup by Parallel Implementation
 - **Classification**
 - **Computation time (s)**
 - **Speedup**
 - **Parallel Algorithm**
 - **Original Serial Algorithm**