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History of OpenMP 

SGI 

Cray 

Merged, 

needed 

commonality 

across 

products 

KAI ISV - needed 

larger market 

was tired of 

recoding for 

SMPs.  Urged 

vendors to 

standardize. 

ASCI 

Wrote a 

rough draft 

straw man 

SMP API 

DEC 

IBM 

Intel 

HP 

Other vendors 

invited to join 

1997 



3 

OpenMP Release History 

OpenMP 

Fortran 1.1 

OpenMP 

C/C++ 1.0 

OpenMP 

Fortran 2.0 

OpenMP 

C/C++ 2.0 

1998 

2000 1999 

2002 

OpenMP 

Fortran 1.0 

1997 

OpenMP 

2.5 

2005 

A single 

specification 

for Fortran, C 

and C++ 

OpenMP 

3.0 

Tasking, runtime 

control over loop 

schedules, explicit 

control over nested 

parallel regions, refined 

control over resources. 

2008 

OpenMP 

3.1 

2011 

Expanded 

atomics, refined 

tasking, and 

more control 

over nested 

parallel regions 
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Outline 

• Tasks (OpenMP 3.0)   

• The OpenMP Memory model (flush) 

• Atomics (OpenMP 3.1)   

• Recapitulation 
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Consider simple list traversal 

    p=head; 

    while (p) { 

       process(p); 

       p = p->next; 

   } 

• Given what we’ve covered about OpenMP, how would you 
process this loop in Parallel? 

• Remember, the loop worksharing construct only works with 
loops for which the number of loop iterations can be 
represented by a  closed-form expression at compiler time.  
While loops are not covered. 
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Linked lists with OpenMP 2.5 
 while (p != NULL) { 

  p = p->next; 

       count++; 

 } 

 parr = (*node) malloc(count * sizeof(struct node)); 

 p = head; 

 for(i=0; i<count; i++) { 

       parr[i] = p; 

       p = p->next; 

    } 

 #pragma omp parallel  

 { 

      #pragma omp for schedule(static,1) 

      for(i=0; i<count; i++) 

         process(parr[i]); 

 } 

Count number of items in the linked list 

Copy pointer to each node into an array 

Process nodes in parallel with a for loop 

This is really ugly!  There has got to be a better way 



OpenMP needed a more flexible way to 

define units of work: Tasks 

• Tasks are independent units of work. 

• Tasks are composed of: 

– code to execute 

– data environment 

– internal control variables (ICV) 

• Threads perform the work of each task. 

• The runtime system decides when tasks 

are executed  

– Tasks may be deferred  

– Tasks may be executed immediately 

Serial Parallel 



Task Construct – Explicit Tasks 

#pragma omp parallel 

{ 

   #pragma omp single 

   {    

      node * p = head; 

      while (p) {    

      #pragma omp task firstprivate(p) 

         process(p); 

      p = p->next;    

      } 

   } 

} 

1. Create 

a team of 

threads. 

2. One thread 

executes the 

single construct   

 

… other threads 

wait at the implied 

barrier at the end of 

the single construct 

3. The “single” thread 

creates a task with its own 

value for the pointer p  

4. Threads waiting at the barrier execute 

tasks. 

 

Execution moves beyond the barrier once 

all the tasks are complete 



#pragma omp parallel 

{ 

   #pragma omp single 

   {   //block 1 

      node * p = head; 

      while (p) { // block 2 

      #pragma omp task  

         process(p);  

      p = p->next;   //block 3 

      } 

   } 

} 
 

Why are tasks useful? 

Have potential to parallelize irregular patterns and recursive function calls 
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When are tasks guaranteed to complete 
• Tasks are guaranteed to be complete at thread barriers: 

#pragma omp barrier 

• or task barriers 
#pragma omp taskwait 
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#pragma omp parallel 

{ 

#pragma omp task 

foo(); 

#pragma omp barrier 

#pragma omp single 

{ 

#pragma omp task 

bar(); 

} 

} 

Multiple foo tasks created 

here – one for each thread 

All foo tasks guaranteed to 

be completed  here 

One bar task created here 

bar task guaranteed to be 

completed  here 



int fib ( int n ) 

{ 

 

int x,y; 

   if ( n < 2 ) return n; 

#pragma omp task 

   x = fib(n-1); 

#pragma omp task 

   y = fib(n-2); 

#pragma omp taskwait 

   return x+y 

} 

Data Scoping with tasks: Fibonacci example.  

n is private in both tasks 

What’s wrong here? 

 A task’s private variables are  

undefined outside the task 

x is a private variable 

y is a private variable 



int fib ( int n ) 

{ 

 

int x,y; 

   if ( n < 2 ) return n; 

#pragma omp task shared (x) 

   x = fib(n-1); 

#pragma omp task shared(y) 

   y = fib(n-2); 

#pragma omp taskwait 

   return x+y; 

} 

Data Scoping with tasks: Fibonacci example.  

n is private in both tasks 

x & y are shared  

Good solution  

we need both values to 

compute the sum 



List ml; //my_list 

Element *e; 

#pragma omp parallel 

#pragma omp single 

{ 

   for(e=ml->first;e;e=e->next) 

#pragma omp task 

      process(e); 

} 

Data Scoping with tasks: List Traversal example 

What’s wrong here? 

Possible data race ! 

Shared variable e  

updated by multiple tasks 



List ml; //my_list 

Element *e; 

#pragma omp parallel 

#pragma omp single 

{ 

   for(e=ml->first;e;e=e->next) 

#pragma omp task firstprivate(e) 

      process(e); 

} 

Data Scoping with tasks: List Traversal example 

Good solution – e is 

firstprivate 
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A real example: Symmetric rank-k update 

+= 

C A AT 

A1 

A0 

AT
0 AT

1 C10 
C11 

Add A1A
T

0 

Add A0A
T

0 

Note: the iteration sweeps through C and A, creating a new block of rows to be 

updated with new parts of A.  These updates are completely independent. 

Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. “Parallelizing FLAME 

Code with OpenMP Task Queues.” TOMS , submitted.  
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#pragma omp parallel  

{ 

   #pragma omp single 

   { 

   }  // end of task-queue 

}   // end of parallel region 

#pragma omp task firstprivate(A0, A1, C10, C11) 
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Outline 

• Tasks (OpenMP 3.0)   

• The OpenMP Memory model (flush) 

• Atomics (OpenMP 3.1)   

• Recapitulation 
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OpenMP memory model 

  

proc1 proc2 proc3 procN 

Shared memory 

cache1 cache2   cache3 cacheN 

a 

a . . . 

 A memory model is defined in terms of: 

Coherence: Behavior of the memory system when a single address 
is accessed by multiple threads. 

Consistency: Orderings of reads, writes, or synchronizations (RWS) 
with various addresses and by multiple threads. 

 OpenMP supports a shared memory model. 

 All threads share an address space …  but what actually see at a given 

point in time may be complicated:  
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Source code 

Program order 

memory 

a b 
Commit order 

private view 

thread thread 

private view 
threadprivate threadprivate a a b b 

Wa  Wb  Ra  Rb  . . .  

OpenMP Memory Model: Basic Terms 

compiler 

Executable code 

Code order 

Wb Rb Wa Ra . . .  

RW’s in any 

semantically 

equivalent order 
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Consistency: Memory Access Re-ordering 

• Re-ordering: 

– Compiler re-orders program order to the code order 

– Machine re-orders code order to the memory commit order 

• At a given point in time, the “private view” seen by a thread 

may be different from the view in shared memory. 

• Consistency Models define constraints on the orders of Reads 

(R), Writes (W) and Synchronizations (S)  

– … i.e. how do the values “seen” by a thread change as you change 

how ops follow (→) other ops.   

– Possibilities include: 

– R→R,  W→W,  R→W,   R→S,  S→S,  W→S 
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Consistency 

• Sequential Consistency: 

– In a multi-processor, ops (R, W, S) are sequentially consistent if: 

–  They remain in program order for each processor. 

–  They are seen to be in the same overall order by each of the 

other processors. 

– Program order = code order = commit order 

• Relaxed consistency: 

– Remove some of the ordering constraints for memory ops (R, W, S). 
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OpenMP and Relaxed Consistency 

• OpenMP defines consistency as a variant of weak 

consistency: 

– S ops must be in sequential order across threads. 

– Can not reorder S ops with R or W ops on the same addresses on 

the same thread 

– Weak consistency guarantees  

S→W,   S→R , R→S, W→S, S→S 

• The Synchronization operation relevant to this discussion 

is flush. 
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Flush 

• Defines a sequence point at which a thread is guaranteed to 

see a consistent view of memory with respect to the “flush 

set”. 

• The flush set is: 

– “all thread visible variables” for a flush construct without an argument 

list. 

– a list of variables when the “flush(list)” construct is used. 

• The action of Flush is to guarantee that: 

– All R,W ops that overlap the flush set and occur prior to the flush 

complete before the flush executes 

– All R,W ops that overlap the flush set and occur after the flush don’t 

execute until after the flush. 

– Flushes with overlapping flush sets can not be reordered. 

Memory ops: R = Read,  W = write, S = synchronization 
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Synchronization: flush example 

 Flush forces data to be updated in memory so other 
threads see the most recent value 

double A; 

A = compute(); 

flush(A);   // flush to memory to make sure other 

                  //  threads can pick up the right value   

Note: OpenMP’s flush is analogous to a fence in other 

shared memory API’s. 
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What is the Big Deal with Flush? 
 

• Compilers routinely reorder instructions implementing a 
program 

– This helps better exploit the functional units, keep machine busy, hide 
memory latencies, etc. 

• Compiler generally cannot move instructions: 

– past a barrier 

– past a flush on all variables 

• But it can move them past a flush with a list of variables so 
long as those variables are not accessed 

• Keeping track of consistency when flushes are used can be 
confusing … especially if “flush(list)” is used. 

Note: the flush operation does not actually synchronize different 

threads. It just ensures that a thread’s values are made 

consistent with main memory.  
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Example: prod_cons.c 

 
 int main() 
 { 
   double *A, sum, runtime;     int flag = 0; 
 
   A = (double *)malloc(N*sizeof(double)); 
 
   runtime = omp_get_wtime(); 
 
   fill_rand(N, A);        // Producer: fill an array of data 
 
   sum = Sum_array(N, A);  // Consumer: sum the array 
    
   runtime = omp_get_wtime() - runtime; 
 
   printf(" In %lf secs, The sum is %lf \n",runtime,sum); 
 } 

• Parallelize a producer consumer program 

– One thread produces values that another thread consumes. 

– The key is to 

implement 

pairwise 

synchronization 

between 

threads. 

– Often used with a 

stream of 

produced values 

to implement 

“pipeline 

parallelism” 
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Pair wise synchronizaion in OpenMP 

• OpenMP lacks synchronization constructs that work 

between pairs of threads. 

• When this is needed you have to build it yourself. 

• Pair wise synchronization 

– Use a shared flag variable 

– Reader spins waiting for the new flag value 

– Use flushes to force updates to and from memory 
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Example: producer consumer 
int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
           #pragma omp flush 
           flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        { 
           #pragma omp flush (flag) 
           while (flag == 0){ 
                #pragma omp flush (flag) 
           } 
           #pragma omp flush  
           sum = Sum_array(N, A); 
        } 
      } 
} 

Use flag to Signal when the 

“produced” value is ready 

Flush forces refresh to memory.  

Guarantees that the other thread 

sees the new value of A 

Notice you must put the flush inside the 

while loop to make sure the updated flag 

variable is seen 

Flush needed on both “reader” and “writer” 

sides of the communication 
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Outline 

• Tasks (OpenMP 3.0)   

• The OpenMP Memory model (flush) 

• Atomics (OpenMP 3.1)   

• Recapitulation 



Atomics and synchronization flags 

• This program only 

works since we don’t 

really care about the 

value of flag … all we 

care is that the flag 

no longer equals 

zero. 

• Why is there a 

problem 

comunicating the 

actual value of flag?  

Doesn’t the flush 

assure the flag value 

is cleanly 

communicated? 
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int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
           #pragma omp flush 
           flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        { 
           #pragma omp flush (flag) 
           while (flag == 0){ 
                #pragma omp flush (flag) 
           } 
           #pragma omp flush  
           sum = Sum_array(N, A); 
        } 
      } 
} 



Atomics and synchronization flags 
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int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
           #pragma omp flush 
           flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        { 
           #pragma omp flush (flag) 
           while (flag == 0){ 
                #pragma omp flush (flag) 
           } 
           #pragma omp flush  
           sum = Sum_array(N, A); 
        } 
      } 
} 

If flag straddles word 

boundaries or is a data type that 

consists of multiple words, it is 

possible for the read to load a 

partial result. 

 

We need the ability to manage 

updates to memory locations 

atomically. 



Remember the Atomic construct? 

• The original 

OpenMP 

atomic was 

too restrictive 

…. For 

example it 

didn’t include 

a simple 

atomic store. 

34 



The OpenMP 3.1 atomics (1 of 2) 

• Atomic was expanded to cover the full range of common scenarios 

where you need to protect a memory operation so it occurs atomically: 

 # pragma omp atomic [read | write | update | capture] 

35 

• Atomic can protect loads 

 # pragma omp atomic read 

  v = x;  

• Atomic can protect stores 

 # pragma omp atomic write 

  x = expr;  

• Atomic can protect updates to a storage location (this is the default 

behavior … i.e. when you don’t provide a clause) 

 # pragma omp atomic update 

  x++;  or ++x;  or x--;  or –x;  or  

  x binop= expr; or x = x binop expr; 

This is the 

original OpenMP 

atomic 



The OpenMP 3.1 atomics (2 of 2) 

• Atomic can protect the assignment of a value (its capture) AND an 

associated update operation: 

 # pragma omp atomic capture 

  statement or structured block 
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• Where the statement is one of the following forms: 

  v = x++;       v = ++x;        v = x--;       v =  –x;       v = x binop expr; 

• Where the structured block is one of the following forms: 

   
{v = x;  x binop = expr;} {x  binop = expr;     v = x;} 

{v=x;    x=x binop expr;} {X = x binop expr;   v = x;} 

{v = x;   x++;} {v=x;     ++x:} 

{++x;     v=x:} {x++;      v = x;} 

{v = x;    x--;} {v= x;     --x;} 

{--x;        v = x;} {x--;        v = x;} 

The capture semantics in atomic were added to map onto common hardware 

supported atomic ops and to support modern lock free algorithms. 



Atomics and synchronization flags 
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int main() 
{   double *A, sum, runtime;     
    int numthreads, flag = 0, flg_tmp; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        {  fill_rand(N, A); 
           #pragma omp flush 
           #pragma atomic write 
                    flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        {  while (1){ 
               #pragma omp flush(flag)  
               #pragma omp atomic read 
                      flg_tmp= flag;  
                if (flg_tmp==1) break; 
            } 
            #pragma omp flush 
            sum = Sum_array(N, A); 
        } 
      } 
} 

This program is truly 

race free … the reads 

and writes of flag are 

protected so the two 

threads can not 

conflict.  
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Outline 

• Tasks (OpenMP 3.0)   

• The OpenMP Memory model (flush) 

• Atomics (OpenMP 3.1)   

• Recapitulation 



If you become overwhelmed during this course … 

• Come back to this slide and remind yourself … things are not 

as bad as they seem 

39 
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SPMD: Single Program Mulitple Data 

• Run the same program on P processing elements where P 

can be arbitrarily large.  

• Use the rank … an ID ranging from 0 to (P-1) … to select 

between a set of tasks and to manage any shared data 

structures.  

This pattern is very general and has been used to support 

most (if not all) the algorithm strategy patterns. 

MPI programs almost always use this pattern … it is 

probably the most commonly used pattern in the history of 

parallel programming. 
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OpenMP Pi program: SPMD pattern 

#include <omp.h> 
void main (int argc, char *argv[]) 
{ 
   int i, pi=0.0, step, sum = 0.0; 
   step = 1.0/(double) num_steps ; 
#pragma omp parallel firstprivate(sum) private(x, i) 
{     int id = omp_get_thread_num(); 
      int numprocs = omp_get_num_threads(); 
      int step1 = id *num_steps/numprocs ; 
      int stepN = (id+1)*num_steps/numprocs; 
      if (stepN != num_steps) stepN = num_steps; 
      for (i=step1; i<stepN; i++) 
      {    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
      } 
    #pragma omp critical 
        pi += sum *step ;  
  } 
} 
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Loop parallelism 

• Collections of tasks are defined as iterations of one or more 

loops.  

• Loop iterations are divided between a collection of 

processing elements to compute tasks in parallel.  

This design pattern is heavily used with data parallel design 

patterns.  

OpenMP programmers commonly use this pattern. 

#pragma  omp parallel for shared(Results) schedule(dynamic) 

for(i=0;i<N;i++){ 

 Do_work(i, Results); 

} 
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OpenMP PI Program:  
Loop level parallelism pattern 

#include <omp.h> 

static long num_steps = 100000;         double step; 

#define NUM_THREADS 2 

void main () 

{   int i;    double x, pi, sum =0.0; 

   step = 1.0/(double) num_steps; 

   omp_set_num_threads(NUM_THREADS); 

#pragma omp parallel for private(x) reduction (+:sum) 

   for (i=0;i< num_steps; i++){ 

    x = (i+0.5)*step; 

    sum += 4.0/(1.0+x*x); 

   } 

   

    pi = sum * step; 

} 
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Fork-join 

• Use when: 

– Target platform has a shared address space 

– Dynamic task parallelism 

• Particularly useful when you have a serial program to 

transform incrementally into a parallel program 

• Solution: 
1. A computation begins and ends as a single thread. 

2. When concurrent tasks are desired, additional threads are forked. 

3. The thread carries out the indicated task,  

4. The set of threads recombine (join) 

Cilk and OpenMP make heavy use of this pattern. 



Numerical Integration: PThreads 

#include <stdio.h> 

#include <pthread.h> 

#define NSTEPS 10000000 

#define NTHRS 4 

double gStep=0.0, gPi=0.0;      

pthread_mutex_t gLock; 

void *Func(void *pArg) 

{ 

 int i, ID = *((int *)pArg); 

 double partialSum = 0.0, x;   

 for(i=ID;i<NSTEPS;i+=NTHRS) 

 { 

   x = (i + 0.5f) * gStep; 

   partialSum +=  

             4.0f/(1.0f+x*x);   

 } 

 pthread_mutex_lock(&gLock); 

   gPi += partialSum * gStep;   

 pthread_mutex_unlock(&gLock); 

 return 0; 

} 

int main() 

{ 

  pthread_t thrds[NTHRS]; 

  int tNum[NTHRS], i; 

  pthread_mutex_init(&gLock,NULL); 

  gStep = 1.0 / NSTEPS; 

  for ( i = 0; i < NTHRS; ++i ) 

  { 

    tRank[i] = i; 

    pthread_create(&thrds[i],NULL, 

          Func,(void)&tRank[i]);  

  } 

  for ( i = 0; i < NTHRS; ++i ) 

  { 

    pthread_join(thrds[i], NULL); 

  } 

  pthread_mutex_destroy(&gLock); 

  return 0; 

} 



Divide and Conquer Pattern 

• Use when: 

–A problem includes a method to divide into subproblems 
and a way to recombine solutions of subproblems into a 
global solution. 

• Solution 

–Define a split operation 

–Continue to split the problem until subproblems are 
small enough to solve directly. 

–Recombine solutions to subproblems to solve original 
global problem. 

• Note:  

–Computing may occur at each phase (split, leaves, 
recombine). 



Divide and conquer 

• Split the problem into smaller sub-problems. Continue until 
the sub-problems can be solve directly. 

 3 Options: 

 Do work as you split 

into sub-problems. 

 Do work only at the 

leaves. 

 Do work as you 

recombine. 



Program: OpenMP tasks (divide and conquer pattern) 
#include <omp.h> 

static long num_steps = 100000000; 

#define MIN_BLK  10000000 

double pi_comp(int Nstart,int Nfinish,double step) 

{   int i,iblk; 

   double x, sum = 0.0,sum1, sum2; 

   if (Nfinish-Nstart < MIN_BLK){ 

      for (i=Nstart;i< Nfinish; i++){ 

         x = (i+0.5)*step; 

         sum = sum + 4.0/(1.0+x*x);  
      } 

   } 

   else{ 

      iblk = Nfinish-Nstart; 

      #pragma omp task shared(sum1) 

           sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step); 

      #pragma omp task shared(sum2) 

            sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step); 

      #pragma omp taskwait 

         sum = sum1 + sum2; 

   }return sum; 

} 
48 

 int main () 

 { 

   int i; 

   double step, pi, sum; 

    step = 1.0/(double) num_steps; 

    #pragma omp parallel   

    { 

        #pragma omp single 

            sum = pi_comp(0,num_steps,step); 

     } 

      pi = step * sum; 

 }   



Results*: pi with tasks 

49 

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads 1st 

SPMD 

SPMD 

critical 

PI Loop Pi tasks 

1 1.86 1.87 1.91 1.87 

2 1.03 1.00 1.02 1.00 

3 1.08 0.68 0.80 0.76 

4 0.97 0.53 0.68 0.52 
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Kernel Parallelism 
• Kernel Parallelism:   

– Implement data parallel problems: 

– Define an abstract index space that appropriately spans the problem 

domain. 

– Data structures in the problem are aligned to this index space. 

– Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on 

these data structures for each point in the index space. 

Note: This is basically a fine grained extreme form of the SPMD 

pattern.  

 This approach was popularized for 

graphics applications where the index 

space mapped onto the pixels in an 

image.    

 In the last ~10 years, It’s been 

extended to General Purpose GPU 

(GPGPU) programming for 

heterogeneous platforms. A typical heterogeneous platform 
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OpenCL: An N-dim. domain of work-items 

• Define an N-dimensioned index space that is “best” for your 

algorithm 

– Global Dimensions:    1024 x 1024    (whole problem space) 

– Local Dimensions:  128 x 128      (work group … executes together)  

1024 

1
0

2
4

 

Synchronization between work-items 

possible only within workgroups: 

barriers and memory fences 

Cannot synchronize outside 

of a workgroup 
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OpenCL PI Program:  
Kernel parallelism pattern (host code not shown)  

__kernel void pi(     const int niters,                const float step_size,  

                          __local float* local_sums,   __global float* partial_sums)  

{  

  int num_wrk_items = get_local_size(0), local_id = get_local_id(0); 

  int group_id = get_group_id(0), i, istart, iend;  

  float x, sum, accum = 0.0f;  

  istart = (group_id * num_wrk_items + local_id) * niters;  

  iend = istart+niters;  

  for(i= istart; i<iend; i++){  

     x = (i+0.5f)*step_size;  

     accum += 4.0f/(1.0f+x*x);  

  }    

  local_sums[local_id] = accum;  

  barrier(CLK_LOCAL_MEM_FENCE);  

   if (local_id == 0){  

     sum = 0.0f;  

     for(i=0; i<num_wrk_items;i++){  

          sum += local_sums[i];  

      }  

      partial_sums[group_id] = sum;  

  }  

} 

Store results from this work-group 

in the globally visible buffer.  Finish 

the sum on the host 

Geometric decomposition to define 

work for each OpenCL work-item. 

One work item combines work from 

all the work-items in the group 

Local sum per work-item saved in a local 

array (shared inside workgroup) 
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Vector Parallelism  

• Definition: A single instruction 

stream is applied to multiple 

data elements.  

• One program text 

• One instruction counter 

• Distinct data streams per PE 

PE 

PE 

PE 

PE 
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SSE intrinsics PI Program:  
Vector parallelism pattern 

#include "xmmintrin.h" 

float pi_sse_double(int num_steps) 

{ 

int i; 

double step, pi; 

double scalar_one = 1.0,  

double scalar_zero = 0.0; 

double ival, scalar_four = 4.0; 

double vsum[2]; 

step = 1.0/(double) num_steps; 

__m128d xvec;  

__m128d denom;  

__m128d eye;  

__m128d ramp = _mm_setr_pd(0.5, 1.5); 

__m128d one = _mm_load1_pd(&scalar_one); 

__m128d four = _mm_load1_pd(&scalar_four); 

__m128d vstep = _mm_load1_pd(&step); 

__m128d sum = _mm_load1_pd(&scalar_zero); 

  for (i=0;i< num_steps; i=i+2){ 

     ival = (double)i; 

     eye = _mm_load1_pd(&ival); 

     xvec = _mm_mul_pd( 

                       _mm_add_pd(eye,ramp),vstep); 

     denom = _mm_add_pd( 

                       _mm_mul_pd(xvec,xvec),one); 

     sum = _mm_add_pd( 

                       _mm_div_pd(four,denom),sum); 

  } 

  _mm_store_pd(&vsum[0],sum); 

  pi = step * (vsum[0]+vsum[1]); 

  return (float)pi; 

} 

baseline 8.98 secs. 

SSE 4.72 secs. 

*Apple MacBook Pro with OS X 10.6.4 and an Intel  Core 2 Duo CPU at 2.4 GHz with 2 GB 667 MHz DDR2 using the Intel C++ compiler version 10.1 with compiler switches -m64 -O3} 



If you become overwhelmed during this course … 

• Come back to this slide and remind yourself … things are not 

as bad as they seem 
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OpenMP summary 

• #pragma omp parallel 

• #pragma omp for 

• #pragma omp critical 

• #pragma omp atomic 

• #pragma omp barrier 

• Data environment clauses 
– private (variable_list) 

– firstprivate (variable_list) 

– lastprivate (variable_list) 

– reduction(+:variable_list) 

• Tasks (remember … private data is made firstprivate by default) 
– pragma omp task 

– pragma omp taskwait 

• #pragma threadprivate(variable_list)   

Where variable_list is a comma 

separated list of variables 

Put this on a line right after you 

define the variables in question 

• #pragma omp single 

• #pragma omp section 

• #pragma omp sections 

• #pragma omp flush 

• We have covered most of OpenMP … enough so you can start writing real 
parallel applications with OpenMP. 

• We have discussed the most common patterns with OpenMP as well …. 
Loop level parallelism,  fork/join, divide and conquer 

• The next step is up to you … write lot’s of code!!! 
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Backup 

• References 

• Threadprivate Data and random numbers 
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OpenMP Organizations 

• OpenMP architecture review  board URL, the 

“owner” of the OpenMP specification: 

www.openmp.org   

• OpenMP User’s Group (cOMPunity) URL: 

www.compunity.org 

Get involved, join compunity and help 

define the future of OpenMP 
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Books about OpenMP 

An excellent book about using 

OpenMP … though out of date 

(OpenMP 2.5) 

A book about how to “think 

parallel” with examples in 

OpenMP, MPI and Java  



Background references 
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A general reference that puts 

languages such as OpenMP 

in perspective (by Sottile, 

Mattson, and Rasmussen) 

An excellent introduction and 

overview of multithreaded 

programming (by Clay Breshears)  



The OpenMP reference card 

61 http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf 

A two page summary of all the OpenMP constructs … don’t write OpenMP code without it. 
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OpenMP Papers 
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2000, pp.843-56. Publisher: Elsevier, Netherlands. 
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OpenMP Papers (continued) 
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Backup 

• References 

• Threadprivate Data and random numbers 
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Data sharing: Threadprivate 

• Makes global data private to a thread 

– Fortran: COMMON  blocks 

– C: File scope and static variables, static class members 

• Different from making them PRIVATE 

– with PRIVATE global variables are masked.  

– THREADPRIVATE preserves global scope within each thread 

• Threadprivate variables can be initialized using COPYIN 

or at time of definition (using language-defined 
initialization capabilities). 
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A threadprivate example (C) 

int counter = 0; 

#pragma omp threadprivate(counter) 

 

int increment_counter() 

{ 

    counter++; 

    return (counter); 

} 

Use threadprivate to create a counter for each thread. 
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Data Copying: Copyin 

      parameter (N=1000) 

      common/buf/A(N) 

!$OMP THREADPRIVATE(/buf/) 

 

C Initialize the A array 

      call init_data(N,A) 

 

!$OMP PARALLEL COPYIN(A) 

 

 … Now each thread sees threadprivate array A initialied  

 … to the global value set in the subroutine init_data() 

 

!$OMP END PARALLEL 

 

end 

You initialize threadprivate data using a copyin 

clause.  
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Data Copying: Copyprivate 

#include <omp.h> 

void input_parameters (int, int); // fetch values of input parameters  

void do_work(int, int);  

 

void main() 

{ 

   int Nsize, choice; 

 

   #pragma omp parallel private (Nsize, choice) 

   { 

        #pragma omp single copyprivate (Nsize, choice) 

               input_parameters (Nsize, choice); 

 

        do_work(Nsize, choice); 

   } 

} 

Used with a single region to broadcast values of privates from 

one member of a team to the rest of the team.   
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Exercise: Monte Carlo Calculations  
Using Random numbers to solve tough problems 

• Sample a problem domain to estimate areas, compute probabilities, 
find optimal values, etc. 

• Example: Computing π with a digital dart board: 

 Throw darts at the circle/square. 

 Chance of falling in circle is proportional 
to ratio of areas: 

Ac = r2 * π 

As = (2*r) * (2*r)  = 4 * r2 

P = Ac/As =  π /4 

 Compute π by randomly choosing 
points, count the fraction that falls in the 
circle, compute pi.   

2 * r 

N= 10      π = 2.8 

N=100      π = 3.16 

N= 1000    π = 3.148 
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Computers and random numbers 

• We use “dice” to make random numbers:  
– Given previous values, you cannot predict the next value. 

– There are no patterns in the series … and it goes on forever. 

• Computers are deterministic machines … set an initial state, 
run a sequence of predefined instructions, and you get a 
deterministic answer 
– By design, computers are not random and cannot produce random 

numbers. 

• However, with some very clever programming, we can make 
“pseudo random” numbers that are as random as you need 
them to be … but only if you are very careful. 

• Why do I care?  Random numbers drive statistical methods 
used in countless applications: 
– Sample a large space of alternatives to find statistically good answers 

(Monte Carlo methods).  
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Parallel Programmers love Monte Carlo 

algorithms 

#include “omp.h” 
static long num_trials = 10000; 
int main () 
{ 
   long i;      long Ncirc = 0;       double pi, x, y; 
   double r = 1.0;   // radius of circle. Side of squrare is 2*r  
   seed(0,-r, r);  // The circle and square are centered at the origin 
   #pragma omp parallel for private (x, y) reduction (+:Ncirc) 
   for(i=0;i<num_trials; i++) 
   { 
      x = random();         y = random(); 
      if ( x*x + y*y) <= r*r)   Ncirc++; 
    } 
 
    pi = 4.0 * ((double)Ncirc/(double)num_trials); 
    printf("\n %d trials, pi is %f \n",num_trials, pi); 
} 

Embarrassingly parallel: the 
parallelism is so easy its 
embarrassing. 

Add two lines and you have a 
parallel program. 
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Linear Congruential Generator (LCG) 

• LCG: Easy to write, cheap to compute, portable, OK quality 

 If you pick the multiplier and addend correctly, LCG has a period of 
PMOD. 

 Picking good LCG parameters is complicated, so look it up 
(Numerical Recipes is a good source).  I used the following: 

 MULTIPLIER = 1366 

 ADDEND = 150889 

 PMOD = 714025 

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 

random_last = random_next; 
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LCG code 

static long MULTIPLIER  = 1366; 
static long ADDEND      = 150889; 
static long PMOD        = 714025; 
long random_last = 0; 
double random () 
{ 
    long random_next;  
 
    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 
    random_last = random_next; 
 
   return  ((double)random_next/(double)PMOD); 
} 

Seed the pseudo random 

sequence by setting 

random_last 
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Running the PI_MC program with LCG generator 
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Run the same 

program the 

same way and 

get different 

answers!   

That is not 

acceptable! 

Issue: my LCG 

generator is not 

threadsafe 

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel 

T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP. 
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LCG code: threadsafe version 

static long MULTIPLIER  = 1366; 
static long ADDEND      = 150889; 
static long PMOD        = 714025; 
long random_last = 0; 
#pragma omp threadprivate(random_last) 
double random () 
{ 
    long random_next;  
 
    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 
    random_last = random_next; 
 
   return  ((double)random_next/(double)PMOD); 
} 

random_last carries state 

between random number 

computations, 

To make the generator 

threadsafe, make 

random_last threadprivate 

so each thread has its 

own copy. 
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Thread safe random number generators 
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Thread safe 

version gives the 

same answer each 

time you run the 

program. 

But for large 

number of 

samples, its 

quality is lower 

than the one 

thread result! 

Why? 
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Pseudo Random Sequences 
• Random number Generators (RNGs) define a sequence of pseudo-random 

numbers of length equal to the period of the RNG 

 In a typical problem, you grab a subsequence of the RNG range 

Seed determines starting point 

 Grab arbitrary seeds and you may generate overlapping sequences   

 E.g. three sequences … last one wraps at the end of the RNG period. 

 Overlapping sequences = over-sampling and bad statistics … lower quality or 
even wrong answers! 

Thread 1 

Thread 2 

Thread 3 



• Multiple threads cooperate to generate and use 
random numbers. 

• Solutions: 
– Replicate and Pray 
– Give each thread a separate, independent generator 
– Have one thread generate all the numbers. 
– Leapfrog … deal out sequence values “round robin” 

as if dealing a deck of cards. 
– Block method … pick your seed so each threads gets 

a distinct contiguous block. 

 
• Other than “replicate and pray”, these are 

difficult to implement.  Be smart … buy a math 
library that does it right. 
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Parallel random number generators 

If done right, can 

generate the 

same sequence 

regardless of the 

number of 

threads … 

Nice for 

debugging, but 

not really needed 

scientifically. 

Intel’s Math kernel Library supports all 

of these methods. 
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MKL Random number generators (RNG) 

#define BLOCK 100 

double  buff[BLOCK];  

VSLStreamStatePtr stream; 

 

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);  

 

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,    

                      BLOCK, buff, low, hi) 

 

vslDeleteStream( &stream ); 

 MKL includes several families of RNGs in its vector statistics library. 

 Specialized to efficiently generate vectors of random numbers 

Initialize a 

stream of 

pseudo 

random 

numbers 

Select type of RNG 

and set seed 

Fill buff with BLOCK pseudo rand.  

nums, uniformly distributed with values 

between low and hi. 
Delete the stream when you are done 
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Wichmann-Hill generators (WH) 

• WH is a family of 273 parameter sets each defining a non-

overlapping and independent RNG. 

• Easy to use, just make each stream threadprivate and initiate RNG 

stream so each thread gets a unique WG RNG.  

VSLStreamStatePtr stream;  

#pragma omp threadprivate(stream) 

                                        … 

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed); 
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Independent Generator for each thread 
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Notice that once 

you get beyond 

the high error, 

small sample 

count range, 

adding threads 

doesn’t 

decrease quality 

of random 

sampling. 
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      #pragma omp single 

      {   nthreads = omp_get_num_threads(); 

           iseed = PMOD/MULTIPLIER;     // just pick a seed 

           pseed[0] = iseed; 

           mult_n = MULTIPLIER; 

           for (i = 1; i < nthreads; ++i) 

          { 

 iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD); 

 pseed[i] = iseed; 

 mult_n = (mult_n * MULTIPLIER) % PMOD; 

          } 

 

       } 

       random_last = (unsigned long long) pseed[id]; 

Leap Frog method 
• Interleave samples in the sequence of pseudo random numbers: 

– Thread i starts at the ith number in the sequence 

– Stride through sequence, stride length = number of threads. 

• Result … the same sequence of values regardless of the number of 

threads. 

One thread 

computes offsets 

and strided 

multiplier 

LCG with Addend = 0 just 

to keep things simple  

Each thread stores offset starting 

point into its threadprivate “last 

random” value 
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Same sequence with many threads. 

• We can use the leapfrog method to generate the same 

answer for any number of threads 

Steps One thread 2 threads 4 threads 

1000 3.156 3.156 3.156 

10000 3.1168 3.1168 3.1168 

100000 3.13964 3.13964 3.13964 

1000000 3.140348 3.140348 3.140348 

10000000 3.141658 3.141658 3.141658 


