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History of OpenMP 

SGI 

Cray 

Merged, 

needed 

commonality 

across 

products 

KAI ISV - needed 

larger market 

was tired of 

recoding for 

SMPs.  Urged 

vendors to 

standardize. 

ASCI 

Wrote a 

rough draft 

straw man 

SMP API 

DEC 

IBM 

Intel 

HP 

Other vendors 

invited to join 

1997 
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OpenMP Release History 

Tasking, runtime control over loop schedules, 

explicit control over nested parallel regions, 

refined control over resources. 

Expanded atomics, refined tasking, and more 

control over nested parallel regions 

GPGPU support, 

user defined 

reductions, error 

model, and more 
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Outline 

• Tasks (OpenMP 3.0)   

• The OpenMP Memory model (flush) 

• Atomics (OpenMP 3.1)   

• Recapitulation 
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Consider simple list traversal 

    p=head; 

    while (p) { 

       process(p); 

       p = p->next; 

   } 

• Given what we’ve covered about OpenMP, how would you 
process this loop in Parallel? 

• Remember, the loop worksharing construct only works with 
loops for which the number of loop iterations can be 
represented by a  closed-form expression at compiler time.  
While loops are not covered. 
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Linked lists with OpenMP 2.5 
 while (p != NULL) { 

  p = p->next; 

       count++; 

 } 

 parr = (*node) malloc(count * sizeof(struct node)); 

 p = head; 

 for(i=0; i<count; i++) { 

       parr[i] = p; 

       p = p->next; 

    } 

 #pragma omp parallel  

 { 

      #pragma omp for schedule(static,1) 

      for(i=0; i<count; i++) 

         process(parr[i]); 

 } 

Count number of items in the linked list 

Copy pointer to each node into an array 

Process nodes in parallel with a for loop 

This is really ugly!  There has got to be a better way 



OpenMP needed a more flexible way to 

define units of work: Tasks 

• Tasks are independent units of work. 

• Tasks are composed of: 

– code to execute 

– data environment 

– internal control variables (ICV) 

• Threads perform the work of each task. 

• The runtime system decides when tasks 

are executed  

– Tasks may be deferred  

– Tasks may be executed immediately 

Serial Parallel 



Task Construct – Explicit Tasks 

#pragma omp parallel 

{ 

   #pragma omp single 

   {    

      node * p = head; 

      while (p) {    

      #pragma omp task firstprivate(p) 

         process(p); 

      p = p->next;    

      } 

   } 

} 

#pragma omp parallel 

{ 

   #pragma omp single 

   {    

      node * p = head; 

      while (p) {    

      #pragma omp task firstprivate(p) 

         process(p); 

      p = p->next;    

      } 

   } 

} 

1. Create 

a team of 

threads. 

2. One thread 

executes the 

single construct   

 

… other threads 

wait at the implied 

barrier at the end of 

the single construct 

3. The “single” thread 

creates a task with its own 

value for the pointer p  

4. Threads waiting at the barrier execute 

tasks. 

 

Execution moves beyond the barrier once 

all the tasks are complete 



#pragma omp parallel 

{ 

   #pragma omp single 

   {   //block 1 

      node * p = head; 

      while (p) { // block 2 

      #pragma omp task  

         process(p);  

      p = p->next;   //block 3 

      } 

   } 

} 
 

Why are tasks useful? 

Have potential to parallelize irregular patterns and recursive function calls 
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When are tasks guaranteed to complete 
• Tasks are guaranteed to be complete at thread barriers: 

#pragma omp barrier 

• or task barriers 
#pragma omp taskwait 
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#pragma omp parallel 

{ 

#pragma omp task 

foo(); 

#pragma omp barrier 

#pragma omp single 

{ 

#pragma omp task 

bar(); 

} 

} 

#pragma omp parallel 

{ 

#pragma omp task 

foo(); 

#pragma omp barrier 

#pragma omp single 

{ 

#pragma omp task 

bar(); 

} 

} 

Multiple foo tasks created 

here – one for each thread 

All foo tasks guaranteed to 

be completed  here 

One bar task created here 

bar task guaranteed to be 

completed  here 



int fib ( int n ) 

{ 

 

int x,y; 

   if ( n < 2 ) return n; 

#pragma omp task 

   x = fib(n-1); 

#pragma omp task 

   y = fib(n-2); 

#pragma omp taskwait 

   return x+y 

} 

int fib ( int n ) 

{ 

 

int x,y; 

   if ( n < 2 ) return n; 

#pragma omp task 

   x = fib(n-1); 

#pragma omp task 

   y = fib(n-2); 

#pragma omp taskwait 

   return x+y 

} 

Data Scoping with tasks: Fibonacci example.  

n is private in both tasks 

What’s wrong here? 

 A task’s private variables are  

undefined outside the task 

x is a private variable 

y is a private variable 

This program is Broken 



int fib ( int n ) 

{ 

 

int x,y; 

   if ( n < 2 ) return n; 

#pragma omp task shared (x) 

   x = fib(n-1); 

#pragma omp task shared(y) 

   y = fib(n-2); 

#pragma omp taskwait 

   return x+y; 

} 

int fib ( int n ) 

{ 

 

int x,y; 

   if ( n < 2 ) return n; 

#pragma omp task shared (x) 

   x = fib(n-1); 

#pragma omp task shared(y) 

   y = fib(n-2); 

#pragma omp taskwait 

   return x+y; 

} 

Data Scoping with tasks: Fibonacci example.  

n is private in both tasks 

x & y are shared  

Good solution  

we need both values to 

compute the sum 

Fixed 



List ml; //my_list 

Element *e; 

#pragma omp parallel 

#pragma omp single 

{ 

   for(e=ml->first;e;e=e->next) 

#pragma omp task 

      process(e); 

} 

List ml; //my_list 

Element *e; 

#pragma omp parallel 

#pragma omp single 

{ 

   for(e=ml->first;e;e=e->next) 

#pragma omp task 

      process(e); 

} 

Data Scoping with tasks: List Traversal example 

What’s wrong here? 

Possible data race ! 

Shared variable e  

updated by multiple tasks 

This program is Broken 



List ml; //my_list 

Element *e; 

#pragma omp parallel 

#pragma omp single 

{ 

   for(e=ml->first;e;e=e->next) 

#pragma omp task firstprivate(e) 

      process(e); 

} 

List ml; //my_list 

Element *e; 

#pragma omp parallel 

#pragma omp single 

{ 

   for(e=ml->first;e;e=e->next) 

#pragma omp task firstprivate(e) 

      process(e); 

} 

Data Scoping with tasks: List Traversal example 

Good solution – e is 

firstprivate 

Fixed 
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A real example: Symmetric rank-k update 

+= 

C A AT 

A1 

A0 

AT
0 AT

1 C10 
C11 

Add A1A
T

0 

Add A0A
T

0 

Note: the iteration sweeps through C and A, creating a new block of rows to be 

updated with new parts of A.  These updates are completely independent. 

Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. “Parallelizing FLAME 

Code with OpenMP Task Queues.” TOMS , submitted.  
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#pragma omp parallel  

{ 

   #pragma omp single 

   { 

   }  // end of task-queue 

}   // end of parallel region 

#pragma omp task firstprivate(A0, A1, C10, C11) 
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Outline 

• Tasks (OpenMP 3.0)   

• The OpenMP Memory model (flush) 

• Atomics (OpenMP 3.1)   

• Recapitulation 
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A closer look at memory 

• Fundamentally, a program is defined by values of variables (objects) 

committed to memory (storage locations). 

 A program runs as a process consisting of one or more threads. 

 Threads have private memory (on the stack) and an address space 
shared with all the threads in an executing program. 
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Shared memory and threads   

  

proc1 proc2 proc3 procN 

Shared memory 

cache1 cache2   cache3 cacheN 

a 

a . . . 

 Due to features of modern CPUs (such as a cache), at any given time  a 
variable may exit in multiple locations. 

 Hence different threads may see  different values for a variables at one time. 

a 

 Optimizations by compilers and hardware execution models (e.g. out-of-
order-execution) reorder operations to variables. 

 A memory model defines the set of values that can be returned by a read 
and constrains the orders of Read ( R ), Write (W) and Synchronization (S) 
operations.  
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Source code 

Program order 

memory 

a b 
Commit order 

private view 

thread thread 

private view 
threadprivate threadprivate a a b b 

Wa  Wb  Ra  Rb  . . .  

Reordering Memory Operations 

compiler 

Executable code 

Code order 

Wb Rb Wa Ra . . .  

RW’s in any 

semantically 

equivalent order 
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Sequential Consistency 

• Sequential Consistency: 

– In a multi-processor, ops (R, W, S) are sequentially consistent if: 

– Each thread sees (R, W, S) in program order. 

– Order of (R, W, S) seen by all threads corresponds to an interleaved 

execution of ops by all threads 

– All threads see the same order of modifications to any given 

variable.   

• Problems: 

– Current hardware does not directly support sequential consistency: 

–Write buffers break sequential consistency on orders of Writes (W). 

– Size of (R, W) words may be smaller than objects so individual 

(R,W) ops can overlap (e.g. 64 bit variables on a 32 bit architecture). 

– Synchronization operations (S) to impose sequential consistency 

add a great deal of overhead. 
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Solution: Relaxed Consistency 

• Relaxed Consistency models break sequential consistency in 

well defined ways that support efficiency but hopefully let 

programmers continue to reason about correctness 

• Modern languages (C’11, C++’11, and OpenMP but NOT Java) 

stipulate that a program with a data race has undefined 

semantics .. so-called Data-Race-Free Semantics. 

• OpenMP uses a variant of weak consistency: 

– S ops visible to all threads in program order. 

– Can not reorder S ops with R or W ops on the same addresses on the 

same thread 

– Weak consistency guarantees  

S→W,   S→R , R→S, W→S, S→S 

• The Synchronization operation relevant to this discussion is 

flush. 
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Flush 

• Defines a sequence point at which a thread is guaranteed to 

see a consistent view of memory with respect to the “flush set”. 

• The flush set is: 

– “all thread visible variables” for a flush construct without an argument list. 

– a list of variables when the “flush(list)” construct is used. 

• The action of Flush is to guarantee that: 

– All R,W ops that overlap the flush set and occur prior to the flush 

complete before the flush executes 

– All R,W ops that overlap the flush set and occur after the flush don’t 

execute until after the flush. 

– Flushes with overlapping flush sets can not be reordered. 

Memory ops: R = Read,  W = write, S = synchronization 

Note: the flush operation does not actually synchronize different 

threads. It just ensures that a thread’s values are made 

consistent with main memory and avaiallable to other threads.  
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Synchronization: flush example 

 Flush forces data to be updated in memory so other 
threads see the most recent value. 

double A; 

A = compute(); 

#pragma omp flush(A) 

   // flush to memory to make sure other threads 

   // can see the value of A from this thread 

OpenMP’s flush is analogous to a fence in other shared 

memory API’s. 

OpenMP’s flush is analogous to a fence in other shared 

memory API’s. 

 Two forms of flush 

 Flush with a list: only flush variables in the list 

 Flush without a list: flush all “thread visible” variables. . 
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Example: Pair wise synchronization in OpenMP 

• OpenMP lacks synchronization constructs that work 

between pairs of threads. 

• When this is needed you have to build it yourself. 

• Pair wise synchronization 

– Use a shared flag variable 

– Reader spins waiting for the new flag value 

– Use flushes to force updates to and from memory 
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Example: prod_cons.c 

 
 int main() 
 { 
   double *A, sum, runtime;     int flag = 0; 
 
   A = (double *)malloc(N*sizeof(double)); 
 
   runtime = omp_get_wtime(); 
 
   fill_rand(N, A);        // Producer: fill an array of data 
 
   sum = Sum_array(N, A);  // Consumer: sum the array 
    
   runtime = omp_get_wtime() - runtime; 
 
   printf(" In %lf secs, The sum is %lf \n",runtime,sum); 
 } 

• Parallelize a producer consumer program 

– One thread produces values that another thread consumes. 

– The key is to 

implement 

pairwise 

synchronization 

between 

threads. 

– Often used with a 

stream of 

produced values 

to implement 

“pipeline 

parallelism” 
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Example: producer consumer 
int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
           #pragma omp flush 
           flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        { 
           #pragma omp flush (flag) 
           while (flag == 0){ 
                #pragma omp flush (flag) 
           } 
           #pragma omp flush  
           sum = Sum_array(N, A); 
        } 
      } 
} 

Use flag to Signal when the 

“produced” value is ready 

Use flag to Signal when the 

“produced” value is ready 

Flush forces refresh to memory.  

Guarantees that the other thread 

sees the new value of A 

Flush forces refresh to memory.  

Guarantees that the other thread 

sees the new value of A 

Notice you must put the flush inside the 

while loop to make sure the updated flag 

variable is seen 

Notice you must put the flush inside the 

while loop to make sure the updated flag 

variable is seen 

Flush needed on both “reader” and “writer” 

sides of the communication 

Flush needed on both “reader” and “writer” 

sides of the communication 



Data races and flush 

• This program 

works 

everywhere I’ve 

tried it. 

• But technically, it 

has a race on 

the variable flag 

and a compiler is 

free to break this 

program. 

• Later when we 

explore atomics 

in more details, 

we’ll talk about 

how to fix this. 

30 
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Outline 

• Tasks (OpenMP 3.0)   

• The OpenMP Memory model (flush) 

• Atomics (OpenMP 3.1)   

• Recapitulation 



Atomics and synchronization flags 

• This program only 

works since we don’t 

really care about the 

value of flag … all we 

care is that the flag 

no longer equals 

zero. 

• Why is there a 

problem 

comunicating the 

actual value of flag?  

Doesn’t the flush 

assure the flag value 

is cleanly 

communicated? 

32 

int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
           #pragma omp flush 
           flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        { 
           #pragma omp flush (flag) 
           while (flag == 0){ 
                #pragma omp flush (flag) 
           } 
           #pragma omp flush  
           sum = Sum_array(N, A); 
        } 
      } 
} 



Atomics and synchronization flags 
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int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
           #pragma omp flush 
           flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        { 
           #pragma omp flush (flag) 
           while (flag == 0){ 
                #pragma omp flush (flag) 
           } 
           #pragma omp flush  
           sum = Sum_array(N, A); 
        } 
      } 
} 

If flag straddles word 

boundaries or is a data type that 

consists of multiple words, it is 

possible for the read to load a 

partial result. 

 

We need the ability to manage 

updates to memory locations 

atomically. 



Remember the Atomic construct? 

• The original 

OpenMP 

atomic was 

too restrictive 

…. For 

example it 

didn’t include 

a simple 

atomic store. 

34 



The OpenMP 3.1 atomics (1 of 2) 

• Atomic was expanded to cover the full range of common scenarios 

where you need to protect a memory operation so it occurs atomically: 

 # pragma omp atomic [read | write | update | capture] 

35 

• Atomic can protect loads 

 # pragma omp atomic read 

  v = x;  

• Atomic can protect stores 

 # pragma omp atomic write 

  x = expr;  

• Atomic can protect updates to a storage location (this is the default 

behavior … i.e. when you don’t provide a clause) 

 # pragma omp atomic update 

  x++;  or ++x;  or x--;  or –x;  or  

  x binop= expr; or x = x binop expr; 

This is the 

original OpenMP 

atomic 



The OpenMP 3.1 atomics (2 of 2) 

• Atomic can protect the assignment of a value (its capture) AND an 

associated update operation: 

 # pragma omp atomic capture 

  statement or structured block 

36 

• Where the statement is one of the following forms: 

  v = x++;       v = ++x;        v = x--;       v =  –x;       v = x binop expr; 

• Where the structured block is one of the following forms: 

   
{v = x;  x binop = expr;} {x  binop = expr;     v = x;} 

{v=x;    x=x binop expr;} {X = x binop expr;   v = x;} 

{v = x;   x++;} {v=x;     ++x:} 

{++x;     v=x:} {x++;      v = x;} 

{v = x;    x--;} {v= x;     --x;} 

{--x;        v = x;} {x--;        v = x;} 

The capture semantics in atomic were added to map onto common hardware 

supported atomic ops and to support modern lock free algorithms. 



Atomics and synchronization flags 
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int main() 
{   double *A, sum, runtime;     
    int numthreads, flag = 0, flg_tmp; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        {  fill_rand(N, A); 
           #pragma omp flush 
           #pragma atomic write 
                    flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        {  while (1){ 
               #pragma omp flush(flag)  
               #pragma omp atomic read 
                      flg_tmp= flag;  
                if (flg_tmp==1) break; 
            } 
            #pragma omp flush 
            sum = Sum_array(N, A); 
        } 
      } 
} 

This program is truly 

race free … the reads 

and writes of flag are 

protected so the two 

threads can not 

conflict.  
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Outline 

• Tasks (OpenMP 3.0)   

• The OpenMP Memory model (flush) 

• Atomics (OpenMP 3.1)   

• Recapitulation 



If you become overwhelmed during this course … 

• Come back to this slide and remind yourself … things are not 

as bad as they seem 

39 
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SPMD: Single Program Mulitple Data 

• Run the same program on P processing elements where P 

can be arbitrarily large.  

• Use the rank … an ID ranging from 0 to (P-1) … to select 

between a set of tasks and to manage any shared data 

structures.  

This pattern is very general and has been used to support 

most (if not all) the algorithm strategy patterns. 

MPI programs almost always use this pattern … it is 

probably the most commonly used pattern in the history of 

parallel programming. 

This pattern is very general and has been used to support 

most (if not all) the algorithm strategy patterns. 

MPI programs almost always use this pattern … it is 

probably the most commonly used pattern in the history of 

parallel programming. 
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OpenMP Pi program: SPMD pattern 

#include <omp.h> 
void main (int argc, char *argv[]) 
{ 
   int i, pi=0.0, step, sum = 0.0; 
   step = 1.0/(double) num_steps ; 
#pragma omp parallel firstprivate(sum) private(x, i) 
{     int id = omp_get_thread_num(); 
      int numprocs = omp_get_num_threads(); 
      int step1 = id *num_steps/numprocs ; 
      int stepN = (id+1)*num_steps/numprocs; 
      if (stepN != num_steps) stepN = num_steps; 
      for (i=step1; i<stepN; i++) 
      {    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
      } 
    #pragma omp critical 
        pi += sum *step ;  
  } 
} 
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Loop parallelism 

• Collections of tasks are defined as iterations of one or more 

loops.  

• Loop iterations are divided between a collection of 

processing elements to compute tasks in parallel.  

This design pattern is heavily used with data parallel design 

patterns.  

OpenMP programmers commonly use this pattern. 

#pragma  omp parallel for shared(Results) schedule(dynamic) 

for(i=0;i<N;i++){ 

 Do_work(i, Results); 

} 
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OpenMP PI Program:  
Loop level parallelism pattern 

#include <omp.h> 

static long num_steps = 100000;         double step; 

#define NUM_THREADS 2 

void main () 

{   int i;    double x, pi, sum =0.0; 

   step = 1.0/(double) num_steps; 

   omp_set_num_threads(NUM_THREADS); 

#pragma omp parallel for private(x) reduction (+:sum) 

   for (i=0;i< num_steps; i++){ 

    x = (i+0.5)*step; 

    sum += 4.0/(1.0+x*x); 

   } 

   

    pi = sum * step; 

} 
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Fork-join 

• Use when: 

– Target platform has a shared address space 

– Dynamic task parallelism 

• Particularly useful when you have a serial program to 

transform incrementally into a parallel program 

• Solution: 
1. A computation begins and ends as a single thread. 

2. When concurrent tasks are desired, additional threads are forked. 

3. The thread carries out the indicated task,  

4. The set of threads recombine (join) 

Cilk and OpenMP make heavy use of this pattern. 



Numerical Integration: PThreads 

#include <stdio.h> 

#include <pthread.h> 

#define NSTEPS 10000000 

#define NTHRS 4 

double gStep=0.0, gPi=0.0;      

pthread_mutex_t gLock; 

void *Func(void *pArg) 

{ 

 int i, ID = *((int *)pArg); 

 double partialSum = 0.0, x;   

 for(i=ID;i<NSTEPS;i+=NTHRS) 

 { 

   x = (i + 0.5f) * gStep; 

   partialSum +=  

             4.0f/(1.0f+x*x);   

 } 

 pthread_mutex_lock(&gLock); 

   gPi += partialSum * gStep;   

 pthread_mutex_unlock(&gLock); 

 return 0; 

} 

int main() 

{ 

  pthread_t thrds[NTHRS]; 

  int tNum[NTHRS], i; 

  pthread_mutex_init(&gLock,NULL); 

  gStep = 1.0 / NSTEPS; 

  for ( i = 0; i < NTHRS; ++i ) 

  { 

    tRank[i] = i; 

    pthread_create(&thrds[i],NULL, 

          Func,(void)&tRank[i]);  

  } 

  for ( i = 0; i < NTHRS; ++i ) 

  { 

    pthread_join(thrds[i], NULL); 

  } 

  pthread_mutex_destroy(&gLock); 

  return 0; 

} 



Divide and Conquer Pattern 

• Use when: 

–A problem includes a method to divide into subproblems 
and a way to recombine solutions of subproblems into a 
global solution. 

• Solution 

–Define a split operation 

–Continue to split the problem until subproblems are 
small enough to solve directly. 

–Recombine solutions to subproblems to solve original 
global problem. 

• Note:  

–Computing may occur at each phase (split, leaves, 
recombine). 



Divide and conquer 

• Split the problem into smaller sub-problems. Continue until 
the sub-problems can be solve directly. 

 3 Options: 

 Do work as you split 

into sub-problems. 

 Do work only at the 

leaves. 

 Do work as you 

recombine. 



Program: OpenMP tasks (divide and conquer pattern) 
#include <omp.h> 

static long num_steps = 100000000; 

#define MIN_BLK  10000000 

double pi_comp(int Nstart,int Nfinish,double step) 

{   int i,iblk; 

   double x, sum = 0.0,sum1, sum2; 

   if (Nfinish-Nstart < MIN_BLK){ 

      for (i=Nstart;i< Nfinish; i++){ 

         x = (i+0.5)*step; 

         sum = sum + 4.0/(1.0+x*x);  
      } 

   } 

   else{ 

      iblk = Nfinish-Nstart; 

      #pragma omp task shared(sum1) 

           sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step); 

      #pragma omp task shared(sum2) 

            sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step); 

      #pragma omp taskwait 

         sum = sum1 + sum2; 

   }return sum; 

} 
48 

 int main () 

 { 

   int i; 

   double step, pi, sum; 

    step = 1.0/(double) num_steps; 

    #pragma omp parallel   

    { 

        #pragma omp single 

            sum = pi_comp(0,num_steps,step); 

     } 

      pi = step * sum; 

 }   



Results*: pi with tasks 

49 

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads 1st 

SPMD 

SPMD 

critical 

PI Loop Pi tasks 

1 1.86 1.87 1.91 1.87 

2 1.03 1.00 1.02 1.00 

3 1.08 0.68 0.80 0.76 

4 0.97 0.53 0.68 0.52 
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Kernel Parallelism 
• Kernel Parallelism:   

– Implement data parallel problems: 

– Define an abstract index space that appropriately spans the problem 

domain. 

– Data structures in the problem are aligned to this index space. 

– Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on 

these data structures for each point in the index space. 

Note: This is basically a fine grained extreme form of the SPMD 

pattern.  

 This approach was popularized for 

graphics applications where the index 

space mapped onto the pixels in an 

image.    

 In the last ~10 years, It’s been 

extended to General Purpose GPU 

(GPGPU) programming for 

heterogeneous platforms. A typical heterogeneous platform 
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OpenCL: An N-dim. domain of work-items 

• Define an N-dimensioned index space that is “best” for your 

algorithm 

– Global Dimensions:    1024 x 1024    (whole problem space) 

– Local Dimensions:  128 x 128      (work group … executes together)  

1024 

1
0

2
4

 

Synchronization between work-items 

possible only within workgroups: 

barriers and memory fences 

Cannot synchronize outside 

of a workgroup 
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OpenCL PI Program:  
Kernel parallelism pattern (host code not shown)  

__kernel void pi(     const int niters,                const float step_size,  

                          __local float* local_sums,   __global float* partial_sums)  

{  

  int num_wrk_items = get_local_size(0), local_id = get_local_id(0); 

  int group_id = get_group_id(0), i, istart, iend;  

  float x, sum, accum = 0.0f;  

  istart = (group_id * num_wrk_items + local_id) * niters;  

  iend = istart+niters;  

  for(i= istart; i<iend; i++){  

     x = (i+0.5f)*step_size;  

     accum += 4.0f/(1.0f+x*x);  

  }    

  local_sums[local_id] = accum;  

  barrier(CLK_LOCAL_MEM_FENCE);  

   if (local_id == 0){  

     sum = 0.0f;  

     for(i=0; i<num_wrk_items;i++){  

          sum += local_sums[i];  

      }  

      partial_sums[group_id] = sum;  

  }  

} 

Store results from this work-group 

in the globally visible buffer.  Finish 

the sum on the host 

Geometric decomposition to define 

work for each OpenCL work-item. 

One work item combines work from 

all the work-items in the group 

Local sum per work-item saved in a local 

array (shared inside workgroup) 
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Vector Parallelism  

• Definition: A single instruction 

stream is applied to multiple 

data elements.  

• One program text 

• One instruction counter 

• Distinct data streams per PE 

PE 

PE 

PE 

PE 
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SSE intrinsics PI Program:  
Vector parallelism pattern 

#include "xmmintrin.h" 

float pi_sse_double(int num_steps) 

{ 

int i; 

double step, pi; 

double scalar_one = 1.0,  

double scalar_zero = 0.0; 

double ival, scalar_four = 4.0; 

double vsum[2]; 

step = 1.0/(double) num_steps; 

__m128d xvec;  

__m128d denom;  

__m128d eye;  

__m128d ramp = _mm_setr_pd(0.5, 1.5); 

__m128d one = _mm_load1_pd(&scalar_one); 

__m128d four = _mm_load1_pd(&scalar_four); 

__m128d vstep = _mm_load1_pd(&step); 

__m128d sum = _mm_load1_pd(&scalar_zero); 

  for (i=0;i< num_steps; i=i+2){ 

     ival = (double)i; 

     eye = _mm_load1_pd(&ival); 

     xvec = _mm_mul_pd( 

                       _mm_add_pd(eye,ramp),vstep); 

     denom = _mm_add_pd( 

                       _mm_mul_pd(xvec,xvec),one); 

     sum = _mm_add_pd( 

                       _mm_div_pd(four,denom),sum); 

  } 

  _mm_store_pd(&vsum[0],sum); 

  pi = step * (vsum[0]+vsum[1]); 

  return (float)pi; 

} 

baseline 8.98 secs. 

SSE 4.72 secs. 

*Apple MacBook Pro with OS X 10.6.4 and an Intel  Core 2 Duo CPU at 2.4 GHz with 2 GB 667 MHz DDR2 using the Intel C++ compiler version 10.1 with compiler switches -m64 -O3} 



If you become overwhelmed during this course … 

• Come back to this slide and remind yourself … things are not 

as bad as they seem 
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OpenMP summary 

• #pragma omp parallel 

• #pragma omp for 

• #pragma omp critical 

• #pragma omp atomic 

• #pragma omp barrier 

• Data environment clauses 
– private (variable_list) 

– firstprivate (variable_list) 

– lastprivate (variable_list) 

– reduction(+:variable_list) 

• Tasks (remember … private data is made firstprivate by default) 
– pragma omp task 

– pragma omp taskwait 

• #pragma threadprivate(variable_list)   

Where variable_list is a comma 

separated list of variables 

Put this on a line right after you 

define the variables in question 

• #pragma omp single 

• #pragma omp section 

• #pragma omp sections 

• #pragma omp flush 

• We have covered most of OpenMP … enough so you can start writing real 
parallel applications with OpenMP. 

• We have discussed the most common patterns with OpenMP as well …. 
Loop level parallelism,  fork/join, divide and conquer 

• The next step is up to you … write lot’s of code!!! 
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Backup 

• References 

• Threadprivate Data and random numbers 
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OpenMP Organizations 

• OpenMP architecture review  board URL, the 

“owner” of the OpenMP specification: 

www.openmp.org   

• OpenMP User’s Group (cOMPunity) URL: 

www.compunity.org 

Get involved, join compunity and help 

define the future of OpenMP 

Get involved, join compunity and help 

define the future of OpenMP 
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Books about OpenMP 

An excellent book about using 

OpenMP … though out of date 

(OpenMP 2.5) 

A book about how to “think 

parallel” with examples in 

OpenMP, MPI and Java  



Background references 
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A general reference that puts 

languages such as OpenMP 

in perspective (by Sottile, 

Mattson, and Rasmussen) 

An excellent introduction and 

overview of multithreaded 

programming (by Clay Breshears)  



The OpenMP reference card 

61 http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf 

A two page summary of all the OpenMP constructs … don’t write OpenMP code without it. 
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