
1 1

Open MP New Features*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson

Intel Corp.

timothy.g.mattson@intel.com

3.0 and beyond

2

History of OpenMP

SGI

Cray

Merged,

needed

commonality

across

products

KAI ISV - needed

larger market

was tired of

recoding for

SMPs. Urged

vendors to

standardize.

ASCI

Wrote a

rough draft

straw man

SMP API

DEC

IBM

Intel

HP

Other vendors

invited to join

1997

3

OpenMP Release History

Tasking, runtime control over loop schedules,

explicit control over nested parallel regions,

refined control over resources.

Expanded atomics, refined tasking, and more

control over nested parallel regions

GPGPU support,

user defined

reductions, error

model, and more

4

Outline

• Tasks (OpenMP 3.0)

• The OpenMP Memory model (flush)

• Atomics (OpenMP 3.1)

• Recapitulation

5

Consider simple list traversal

 p=head;

 while (p) {

 process(p);

 p = p->next;

 }

• Given what we’ve covered about OpenMP, how would you
process this loop in Parallel?

• Remember, the loop worksharing construct only works with
loops for which the number of loop iterations can be
represented by a closed-form expression at compiler time.
While loops are not covered.

6

Linked lists with OpenMP 2.5
 while (p != NULL) {

 p = p->next;

 count++;

 }

 parr = (*node) malloc(count * sizeof(struct node));

 p = head;

 for(i=0; i<count; i++) {

 parr[i] = p;

 p = p->next;

 }

 #pragma omp parallel

 {

 #pragma omp for schedule(static,1)

 for(i=0; i<count; i++)

 process(parr[i]);

 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

This is really ugly! There has got to be a better way

OpenMP needed a more flexible way to

define units of work: Tasks

• Tasks are independent units of work.

• Tasks are composed of:

– code to execute

– data environment

– internal control variables (ICV)

• Threads perform the work of each task.

• The runtime system decides when tasks

are executed

– Tasks may be deferred

– Tasks may be executed immediately

Serial Parallel

Task Construct – Explicit Tasks

#pragma omp parallel

{

 #pragma omp single

 {

 node * p = head;

 while (p) {

 #pragma omp task firstprivate(p)

 process(p);

 p = p->next;

 }

 }

}

#pragma omp parallel

{

 #pragma omp single

 {

 node * p = head;

 while (p) {

 #pragma omp task firstprivate(p)

 process(p);

 p = p->next;

 }

 }

}

1. Create

a team of

threads.

2. One thread

executes the

single construct

… other threads

wait at the implied

barrier at the end of

the single construct

3. The “single” thread

creates a task with its own

value for the pointer p

4. Threads waiting at the barrier execute

tasks.

Execution moves beyond the barrier once

all the tasks are complete

#pragma omp parallel

{

 #pragma omp single

 { //block 1

 node * p = head;

 while (p) { // block 2

 #pragma omp task

 process(p);

 p = p->next; //block 3

 }

 }

}

Why are tasks useful?

Have potential to parallelize irregular patterns and recursive function calls

Block 1

Block 2

Task 1

Block 2

Task 2

Block 2

Task 3

Block 3

Block 3

T
im

e

Single

Threaded

Block 1

Thr1 Thr2 Thr3 Thr4

Block 2

Task 2

Block 2

Task 1

Block 2

Task 3

Time

Saved

Id
le

Id
le

When are tasks guaranteed to complete
• Tasks are guaranteed to be complete at thread barriers:

#pragma omp barrier

• or task barriers
#pragma omp taskwait

10

#pragma omp parallel

{

#pragma omp task

foo();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

bar();

}

}

#pragma omp parallel

{

#pragma omp task

foo();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

bar();

}

}

Multiple foo tasks created

here – one for each thread

All foo tasks guaranteed to

be completed here

One bar task created here

bar task guaranteed to be

completed here

int fib (int n)

{

int x,y;

 if (n < 2) return n;

#pragma omp task

 x = fib(n-1);

#pragma omp task

 y = fib(n-2);

#pragma omp taskwait

 return x+y

}

int fib (int n)

{

int x,y;

 if (n < 2) return n;

#pragma omp task

 x = fib(n-1);

#pragma omp task

 y = fib(n-2);

#pragma omp taskwait

 return x+y

}

Data Scoping with tasks: Fibonacci example.

n is private in both tasks

What’s wrong here?

 A task’s private variables are

undefined outside the task

x is a private variable

y is a private variable

This program is Broken

int fib (int n)

{

int x,y;

 if (n < 2) return n;

#pragma omp task shared (x)

 x = fib(n-1);

#pragma omp task shared(y)

 y = fib(n-2);

#pragma omp taskwait

 return x+y;

}

int fib (int n)

{

int x,y;

 if (n < 2) return n;

#pragma omp task shared (x)

 x = fib(n-1);

#pragma omp task shared(y)

 y = fib(n-2);

#pragma omp taskwait

 return x+y;

}

Data Scoping with tasks: Fibonacci example.

n is private in both tasks

x & y are shared

Good solution

we need both values to

compute the sum

Fixed

List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

 for(e=ml->first;e;e=e->next)

#pragma omp task

 process(e);

}

List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

 for(e=ml->first;e;e=e->next)

#pragma omp task

 process(e);

}

Data Scoping with tasks: List Traversal example

What’s wrong here?

Possible data race !

Shared variable e

updated by multiple tasks

This program is Broken

List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

 for(e=ml->first;e;e=e->next)

#pragma omp task firstprivate(e)

 process(e);

}

List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

 for(e=ml->first;e;e=e->next)

#pragma omp task firstprivate(e)

 process(e);

}

Data Scoping with tasks: List Traversal example

Good solution – e is

firstprivate

Fixed

15

A real example: Symmetric rank-k update

+=

C A AT

A1

A0

AT
0 AT

1 C10
C11

Add A1A
T

0

Add A0A
T

0

Note: the iteration sweeps through C and A, creating a new block of rows to be

updated with new parts of A. These updates are completely independent.

Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. “Parallelizing FLAME

Code with OpenMP Task Queues.” TOMS , submitted.

16

17

#pragma omp parallel

{

 #pragma omp single

 {

 } // end of task-queue

} // end of parallel region

#pragma omp task firstprivate(A0, A1, C10, C11)

18

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

x 10
4

matrix dimension n

M
F

L
O

P
S

/s
e
c
.

syrk_ln (var2)

Reference

FLAME

OpenFLAME_nth1

OpenFLAME_nth2

OpenFLAME_nth3

OpenFLAME_nth4

Note: the above graphs is for the most naïve way of marching through the matrices.

By picking blocks dynamically, much faster ramp-up can be achieved.

Top line represents peak of

Machine (Itanium2 1.5GHz, 4CPU)

19

Outline

• Tasks (OpenMP 3.0)

• The OpenMP Memory model (flush)

• Atomics (OpenMP 3.1)

• Recapitulation

20

A closer look at memory

• Fundamentally, a program is defined by values of variables (objects)

committed to memory (storage locations).

 A program runs as a process consisting of one or more threads.

 Threads have private memory (on the stack) and an address space
shared with all the threads in an executing program.

21

Shared memory and threads

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a . . .

 Due to features of modern CPUs (such as a cache), at any given time a
variable may exit in multiple locations.

 Hence different threads may see different values for a variables at one time.

a

 Optimizations by compilers and hardware execution models (e.g. out-of-
order-execution) reorder operations to variables.

 A memory model defines the set of values that can be returned by a read
and constrains the orders of Read (R), Write (W) and Synchronization (S)
operations.

22

Source code

Program order

memory

a b
Commit order

private view

thread thread

private view
threadprivate threadprivate a a b b

Wa Wb Ra Rb . . .

Reordering Memory Operations

compiler

Executable code

Code order

Wb Rb Wa Ra . . .

RW’s in any

semantically

equivalent order

23

Sequential Consistency

• Sequential Consistency:

– In a multi-processor, ops (R, W, S) are sequentially consistent if:

– Each thread sees (R, W, S) in program order.

– Order of (R, W, S) seen by all threads corresponds to an interleaved

execution of ops by all threads

– All threads see the same order of modifications to any given

variable.

• Problems:

– Current hardware does not directly support sequential consistency:

–Write buffers break sequential consistency on orders of Writes (W).

– Size of (R, W) words may be smaller than objects so individual

(R,W) ops can overlap (e.g. 64 bit variables on a 32 bit architecture).

– Synchronization operations (S) to impose sequential consistency

add a great deal of overhead.

24

Solution: Relaxed Consistency

• Relaxed Consistency models break sequential consistency in

well defined ways that support efficiency but hopefully let

programmers continue to reason about correctness

• Modern languages (C’11, C++’11, and OpenMP but NOT Java)

stipulate that a program with a data race has undefined

semantics .. so-called Data-Race-Free Semantics.

• OpenMP uses a variant of weak consistency:

– S ops visible to all threads in program order.

– Can not reorder S ops with R or W ops on the same addresses on the

same thread

– Weak consistency guarantees

S→W, S→R , R→S, W→S, S→S

• The Synchronization operation relevant to this discussion is

flush.

25

Flush

• Defines a sequence point at which a thread is guaranteed to

see a consistent view of memory with respect to the “flush set”.

• The flush set is:

– “all thread visible variables” for a flush construct without an argument list.

– a list of variables when the “flush(list)” construct is used.

• The action of Flush is to guarantee that:

– All R,W ops that overlap the flush set and occur prior to the flush

complete before the flush executes

– All R,W ops that overlap the flush set and occur after the flush don’t

execute until after the flush.

– Flushes with overlapping flush sets can not be reordered.

Memory ops: R = Read, W = write, S = synchronization

Note: the flush operation does not actually synchronize different

threads. It just ensures that a thread’s values are made

consistent with main memory and avaiallable to other threads.

26

Synchronization: flush example

 Flush forces data to be updated in memory so other
threads see the most recent value.

double A;

A = compute();

#pragma omp flush(A)

 // flush to memory to make sure other threads

 // can see the value of A from this thread

OpenMP’s flush is analogous to a fence in other shared

memory API’s.

OpenMP’s flush is analogous to a fence in other shared

memory API’s.

 Two forms of flush

 Flush with a list: only flush variables in the list

 Flush without a list: flush all “thread visible” variables. .

27

Example: Pair wise synchronization in OpenMP

• OpenMP lacks synchronization constructs that work

between pairs of threads.

• When this is needed you have to build it yourself.

• Pair wise synchronization

– Use a shared flag variable

– Reader spins waiting for the new flag value

– Use flushes to force updates to and from memory

28

Example: prod_cons.c

 int main()
 {
 double *A, sum, runtime; int flag = 0;

 A = (double *)malloc(N*sizeof(double));

 runtime = omp_get_wtime();

 fill_rand(N, A); // Producer: fill an array of data

 sum = Sum_array(N, A); // Consumer: sum the array

 runtime = omp_get_wtime() - runtime;

 printf(" In %lf secs, The sum is %lf \n",runtime,sum);
 }

• Parallelize a producer consumer program

– One thread produces values that another thread consumes.

– The key is to

implement

pairwise

synchronization

between

threads.

– Often used with a

stream of

produced values

to implement

“pipeline

parallelism”

29

Example: producer consumer
int main()
{
 double *A, sum, runtime; int numthreads, flag = 0;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 fill_rand(N, A);
 #pragma omp flush
 flag = 1;
 #pragma omp flush (flag)
 }
 #pragma omp section
 {
 #pragma omp flush (flag)
 while (flag == 0){
 #pragma omp flush (flag)
 }
 #pragma omp flush
 sum = Sum_array(N, A);
 }
 }
}

Use flag to Signal when the

“produced” value is ready

Use flag to Signal when the

“produced” value is ready

Flush forces refresh to memory.

Guarantees that the other thread

sees the new value of A

Flush forces refresh to memory.

Guarantees that the other thread

sees the new value of A

Notice you must put the flush inside the

while loop to make sure the updated flag

variable is seen

Notice you must put the flush inside the

while loop to make sure the updated flag

variable is seen

Flush needed on both “reader” and “writer”

sides of the communication

Flush needed on both “reader” and “writer”

sides of the communication

Data races and flush

• This program

works

everywhere I’ve

tried it.

• But technically, it

has a race on

the variable flag

and a compiler is

free to break this

program.

• Later when we

explore atomics

in more details,

we’ll talk about

how to fix this.

30

31

Outline

• Tasks (OpenMP 3.0)

• The OpenMP Memory model (flush)

• Atomics (OpenMP 3.1)

• Recapitulation

Atomics and synchronization flags

• This program only

works since we don’t

really care about the

value of flag … all we

care is that the flag

no longer equals

zero.

• Why is there a

problem

comunicating the

actual value of flag?

Doesn’t the flush

assure the flag value

is cleanly

communicated?

32

int main()
{
 double *A, sum, runtime; int numthreads, flag = 0;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 fill_rand(N, A);
 #pragma omp flush
 flag = 1;
 #pragma omp flush (flag)
 }
 #pragma omp section
 {
 #pragma omp flush (flag)
 while (flag == 0){
 #pragma omp flush (flag)
 }
 #pragma omp flush
 sum = Sum_array(N, A);
 }
 }
}

Atomics and synchronization flags

33

int main()
{
 double *A, sum, runtime; int numthreads, flag = 0;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 fill_rand(N, A);
 #pragma omp flush
 flag = 1;
 #pragma omp flush (flag)
 }
 #pragma omp section
 {
 #pragma omp flush (flag)
 while (flag == 0){
 #pragma omp flush (flag)
 }
 #pragma omp flush
 sum = Sum_array(N, A);
 }
 }
}

If flag straddles word

boundaries or is a data type that

consists of multiple words, it is

possible for the read to load a

partial result.

We need the ability to manage

updates to memory locations

atomically.

Remember the Atomic construct?

• The original

OpenMP

atomic was

too restrictive

…. For

example it

didn’t include

a simple

atomic store.

34

The OpenMP 3.1 atomics (1 of 2)

• Atomic was expanded to cover the full range of common scenarios

where you need to protect a memory operation so it occurs atomically:

 # pragma omp atomic [read | write | update | capture]

35

• Atomic can protect loads

 # pragma omp atomic read

 v = x;

• Atomic can protect stores

 # pragma omp atomic write

 x = expr;

• Atomic can protect updates to a storage location (this is the default

behavior … i.e. when you don’t provide a clause)

 # pragma omp atomic update

 x++; or ++x; or x--; or –x; or

 x binop= expr; or x = x binop expr;

This is the

original OpenMP

atomic

The OpenMP 3.1 atomics (2 of 2)

• Atomic can protect the assignment of a value (its capture) AND an

associated update operation:

 # pragma omp atomic capture

 statement or structured block

36

• Where the statement is one of the following forms:

 v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

• Where the structured block is one of the following forms:

{v = x; x binop = expr;} {x binop = expr; v = x;}

{v=x; x=x binop expr;} {X = x binop expr; v = x;}

{v = x; x++;} {v=x; ++x:}

{++x; v=x:} {x++; v = x;}

{v = x; x--;} {v= x; --x;}

{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware

supported atomic ops and to support modern lock free algorithms.

Atomics and synchronization flags

37

int main()
{ double *A, sum, runtime;
 int numthreads, flag = 0, flg_tmp;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 { fill_rand(N, A);
 #pragma omp flush
 #pragma atomic write
 flag = 1;
 #pragma omp flush (flag)
 }
 #pragma omp section
 { while (1){
 #pragma omp flush(flag)
 #pragma omp atomic read
 flg_tmp= flag;
 if (flg_tmp==1) break;
 }
 #pragma omp flush
 sum = Sum_array(N, A);
 }
 }
}

This program is truly

race free … the reads

and writes of flag are

protected so the two

threads can not

conflict.

38

Outline

• Tasks (OpenMP 3.0)

• The OpenMP Memory model (flush)

• Atomics (OpenMP 3.1)

• Recapitulation

If you become overwhelmed during this course …

• Come back to this slide and remind yourself … things are not

as bad as they seem

39

40

SPMD: Single Program Mulitple Data

• Run the same program on P processing elements where P

can be arbitrarily large.

• Use the rank … an ID ranging from 0 to (P-1) … to select

between a set of tasks and to manage any shared data

structures.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

41

OpenMP Pi program: SPMD pattern

#include <omp.h>
void main (int argc, char *argv[])
{
 int i, pi=0.0, step, sum = 0.0;
 step = 1.0/(double) num_steps ;
#pragma omp parallel firstprivate(sum) private(x, i)
{ int id = omp_get_thread_num();
 int numprocs = omp_get_num_threads();
 int step1 = id *num_steps/numprocs ;
 int stepN = (id+1)*num_steps/numprocs;
 if (stepN != num_steps) stepN = num_steps;
 for (i=step1; i<stepN; i++)
 { x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 #pragma omp critical
 pi += sum *step ;
 }
}

42

Loop parallelism

• Collections of tasks are defined as iterations of one or more

loops.

• Loop iterations are divided between a collection of

processing elements to compute tasks in parallel.

This design pattern is heavily used with data parallel design

patterns.

OpenMP programmers commonly use this pattern.

#pragma omp parallel for shared(Results) schedule(dynamic)

for(i=0;i<N;i++){

 Do_work(i, Results);

}

43

OpenMP PI Program:
Loop level parallelism pattern

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i; double x, pi, sum =0.0;

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction (+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 pi = sum * step;

}

44

Fork-join

• Use when:

– Target platform has a shared address space

– Dynamic task parallelism

• Particularly useful when you have a serial program to

transform incrementally into a parallel program

• Solution:
1. A computation begins and ends as a single thread.

2. When concurrent tasks are desired, additional threads are forked.

3. The thread carries out the indicated task,

4. The set of threads recombine (join)

Cilk and OpenMP make heavy use of this pattern.

Numerical Integration: PThreads

#include <stdio.h>

#include <pthread.h>

#define NSTEPS 10000000

#define NTHRS 4

double gStep=0.0, gPi=0.0;

pthread_mutex_t gLock;

void *Func(void *pArg)

{

 int i, ID = *((int *)pArg);

 double partialSum = 0.0, x;

 for(i=ID;i<NSTEPS;i+=NTHRS)

 {

 x = (i + 0.5f) * gStep;

 partialSum +=

 4.0f/(1.0f+x*x);

 }

 pthread_mutex_lock(&gLock);

 gPi += partialSum * gStep;

 pthread_mutex_unlock(&gLock);

 return 0;

}

int main()

{

 pthread_t thrds[NTHRS];

 int tNum[NTHRS], i;

 pthread_mutex_init(&gLock,NULL);

 gStep = 1.0 / NSTEPS;

 for (i = 0; i < NTHRS; ++i)

 {

 tRank[i] = i;

 pthread_create(&thrds[i],NULL,

 Func,(void)&tRank[i]);

 }

 for (i = 0; i < NTHRS; ++i)

 {

 pthread_join(thrds[i], NULL);

 }

 pthread_mutex_destroy(&gLock);

 return 0;

}

Divide and Conquer Pattern

• Use when:

–A problem includes a method to divide into subproblems
and a way to recombine solutions of subproblems into a
global solution.

• Solution

–Define a split operation

–Continue to split the problem until subproblems are
small enough to solve directly.

–Recombine solutions to subproblems to solve original
global problem.

• Note:

–Computing may occur at each phase (split, leaves,
recombine).

Divide and conquer

• Split the problem into smaller sub-problems. Continue until
the sub-problems can be solve directly.

 3 Options:

 Do work as you split

into sub-problems.

 Do work only at the

leaves.

 Do work as you

recombine.

Program: OpenMP tasks (divide and conquer pattern)
#include <omp.h>

static long num_steps = 100000000;

#define MIN_BLK 10000000

double pi_comp(int Nstart,int Nfinish,double step)

{ int i,iblk;

 double x, sum = 0.0,sum1, sum2;

 if (Nfinish-Nstart < MIN_BLK){

 for (i=Nstart;i< Nfinish; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);
 }

 }

 else{

 iblk = Nfinish-Nstart;

 #pragma omp task shared(sum1)

 sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);

 #pragma omp task shared(sum2)

 sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);

 #pragma omp taskwait

 sum = sum1 + sum2;

 }return sum;

}
48

 int main ()

 {

 int i;

 double step, pi, sum;

 step = 1.0/(double) num_steps;

 #pragma omp parallel

 {

 #pragma omp single

 sum = pi_comp(0,num_steps,step);

 }

 pi = step * sum;

 }

Results*: pi with tasks

49

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

SPMD

critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

50

Kernel Parallelism
• Kernel Parallelism:

– Implement data parallel problems:

– Define an abstract index space that appropriately spans the problem

domain.

– Data structures in the problem are aligned to this index space.

– Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on

these data structures for each point in the index space.

Note: This is basically a fine grained extreme form of the SPMD

pattern.

 This approach was popularized for

graphics applications where the index

space mapped onto the pixels in an

image.

 In the last ~10 years, It’s been

extended to General Purpose GPU

(GPGPU) programming for

heterogeneous platforms. A typical heterogeneous platform

51

OpenCL: An N-dim. domain of work-items

• Define an N-dimensioned index space that is “best” for your

algorithm

– Global Dimensions: 1024 x 1024 (whole problem space)

– Local Dimensions: 128 x 128 (work group … executes together)

1024

1
0

2
4

Synchronization between work-items

possible only within workgroups:

barriers and memory fences

Cannot synchronize outside

of a workgroup

52

OpenCL PI Program:
Kernel parallelism pattern (host code not shown)

__kernel void pi(const int niters, const float step_size,

 __local float* local_sums, __global float* partial_sums)

{

 int num_wrk_items = get_local_size(0), local_id = get_local_id(0);

 int group_id = get_group_id(0), i, istart, iend;

 float x, sum, accum = 0.0f;

 istart = (group_id * num_wrk_items + local_id) * niters;

 iend = istart+niters;

 for(i= istart; i<iend; i++){

 x = (i+0.5f)*step_size;

 accum += 4.0f/(1.0f+x*x);

 }

 local_sums[local_id] = accum;

 barrier(CLK_LOCAL_MEM_FENCE);

 if (local_id == 0){

 sum = 0.0f;

 for(i=0; i<num_wrk_items;i++){

 sum += local_sums[i];

 }

 partial_sums[group_id] = sum;

 }

}

Store results from this work-group

in the globally visible buffer. Finish

the sum on the host

Geometric decomposition to define

work for each OpenCL work-item.

One work item combines work from

all the work-items in the group

Local sum per work-item saved in a local

array (shared inside workgroup)

53

Vector Parallelism

• Definition: A single instruction

stream is applied to multiple

data elements.

• One program text

• One instruction counter

• Distinct data streams per PE

PE

PE

PE

PE

54

SSE intrinsics PI Program:
Vector parallelism pattern

#include "xmmintrin.h"

float pi_sse_double(int num_steps)

{

int i;

double step, pi;

double scalar_one = 1.0,

double scalar_zero = 0.0;

double ival, scalar_four = 4.0;

double vsum[2];

step = 1.0/(double) num_steps;

__m128d xvec;

__m128d denom;

__m128d eye;

__m128d ramp = _mm_setr_pd(0.5, 1.5);

__m128d one = _mm_load1_pd(&scalar_one);

__m128d four = _mm_load1_pd(&scalar_four);

__m128d vstep = _mm_load1_pd(&step);

__m128d sum = _mm_load1_pd(&scalar_zero);

 for (i=0;i< num_steps; i=i+2){

 ival = (double)i;

 eye = _mm_load1_pd(&ival);

 xvec = _mm_mul_pd(

 _mm_add_pd(eye,ramp),vstep);

 denom = _mm_add_pd(

 _mm_mul_pd(xvec,xvec),one);

 sum = _mm_add_pd(

 _mm_div_pd(four,denom),sum);

 }

 _mm_store_pd(&vsum[0],sum);

 pi = step * (vsum[0]+vsum[1]);

 return (float)pi;

}

baseline 8.98 secs.

SSE 4.72 secs.

*Apple MacBook Pro with OS X 10.6.4 and an Intel Core 2 Duo CPU at 2.4 GHz with 2 GB 667 MHz DDR2 using the Intel C++ compiler version 10.1 with compiler switches -m64 -O3}

If you become overwhelmed during this course …

• Come back to this slide and remind yourself … things are not

as bad as they seem

55

56

OpenMP summary

• #pragma omp parallel

• #pragma omp for

• #pragma omp critical

• #pragma omp atomic

• #pragma omp barrier

• Data environment clauses
– private (variable_list)

– firstprivate (variable_list)

– lastprivate (variable_list)

– reduction(+:variable_list)

• Tasks (remember … private data is made firstprivate by default)
– pragma omp task

– pragma omp taskwait

• #pragma threadprivate(variable_list)

Where variable_list is a comma

separated list of variables

Put this on a line right after you

define the variables in question

• #pragma omp single

• #pragma omp section

• #pragma omp sections

• #pragma omp flush

• We have covered most of OpenMP … enough so you can start writing real
parallel applications with OpenMP.

• We have discussed the most common patterns with OpenMP as well ….
Loop level parallelism, fork/join, divide and conquer

• The next step is up to you … write lot’s of code!!!

57

Backup

• References

• Threadprivate Data and random numbers

58

OpenMP Organizations

• OpenMP architecture review board URL, the

“owner” of the OpenMP specification:

www.openmp.org

• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join compunity and help

define the future of OpenMP

Get involved, join compunity and help

define the future of OpenMP

59

Books about OpenMP

An excellent book about using

OpenMP … though out of date

(OpenMP 2.5)

A book about how to “think

parallel” with examples in

OpenMP, MPI and Java

Background references

60

A general reference that puts

languages such as OpenMP

in perspective (by Sottile,

Mattson, and Rasmussen)

An excellent introduction and

overview of multithreaded

programming (by Clay Breshears)

The OpenMP reference card

61 http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf

A two page summary of all the OpenMP constructs … don’t write OpenMP code without it.

62

OpenMP Papers

• Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a
ccNUMA architecture using OpenMP. III. Parallel Computing, vol.26, no.7-8, July
2000, pp.843-56. Publisher: Elsevier, Netherlands.

• Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared
memory machine. Computer Physics Communications, vol.124, no.1, Jan. 2000,
pp.49-59. Publisher: Elsevier, Netherlands.

• Bentz J., Kendall R., “Parallelization of General Matrix Multiply Routines Using
OpenMP”, Shared Memory Parallel Programming with OpenMP, Lecture notes in
Computer Science, Vol. 3349, P. 1, 2005

• Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel
analysis of harbor wave response using MPI and OpenMP. International Journal of
High Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64.
Publisher: Sage Science Press, USA.

• Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple
levels of parallelism in OpenMP: a case study. Proceedings of the 1999
International Conference on Parallel Processing. IEEE Comput. Soc. 1999, pp.172-
80. Los Alamitos, CA, USA.

• Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in an
MPI application. Proceedings of the ISCA 12th International Conference. Parallel
and Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.

63

OpenMP Papers (continued)

• Jost G., Labarta J., Gimenez J., What Multilevel Parallel Programs do when you are
not watching: a Performance analysis case study comparing MPI/OpenMP, MLP, and
Nested OpenMP, Shared Memory Parallel Programming with OpenMP, Lecture notes
in Computer Science, Vol. 3349, P. 29, 2005

• Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N.
Applying interposition techniques for performance analysis of OPENMP parallel
applications. Proceedings 14th International Parallel and Distributed Processing
Symposium. IPDPS 2000. IEEE Comput. Soc. 2000, pp.235-40.

• Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality
control. Proceedings of Eighth ECMWF Workshop on the Use of Parallel Processors
in Meteorology. Towards Teracomputing. World Scientific Publishing. 1999, pp.301-
13. Singapore.

• Steve W. Bova, Clay P. Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner,
Bob Kuhn, Bill Magro, Stefano Salvini. Parallel Programming with Message Passing
and Directives; SIAM News, Volume 32, No 9, Nov. 1999.

• Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a cluster
of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture Notes
in Computer Science Vol.1662. Springer-Verlag. 1999, pp.339-50.

• Liu Z., Huang L., Chapman B., Weng T., Efficient Implementationi of OpenMP for
Clusters with Implicit Data Distribution, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 121, 2005

64

OpenMP Papers (continued)

• B. Chapman, F. Bregier, A. Patil, A. Prabhakar, “Achieving performance
under OpenMP on ccNUMA and software distributed shared memory
systems,” Concurrency and Computation: Practice and Experience. 14(8-
9): 713-739, 2002.

• J. M. Bull and M. E. Kambites. JOMP: an OpenMP-like interface for Java.
Proceedings of the ACM 2000 conference on Java Grande, 2000, Pages
44 - 53.

• L. Adhianto and B. Chapman, “Performance modeling of communication
and computation in hybrid MPI and OpenMP applications, Simulation
Modeling Practice and Theory, vol 15, p. 481-491, 2007.

• Shah S, Haab G, Petersen P, Throop J. Flexible control structures for
parallelism in OpenMP; Concurrency: Practice and Experience, 2000;
12:1219-1239. Publisher John Wiley & Sons, Ltd.

• Mattson, T.G., How Good is OpenMP? Scientific Programming, Vol. 11,
Number 2, p.81-93, 2003.

• Duran A., Silvera R., Corbalan J., Labarta J., “Runtime Adjustment of
Parallel Nested Loops”, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 137, 2005

