
Histogram	
Flattened data-parallelism	
Motivation	

A high-level���
framework for OpenCL	

Sparse Matrix-Vector Multiply	

  Importance of flattened data-parallelism is proportional to
expected segment length"

  Segments shorter than naïve SIMD width will benefit from
flattening"

  Trend towards longer SIMD vectors"
  Nvidia G80: 8 wide SIMD"
  Nvidia GF104: 48 wide SIMD"

  Flattening worked well on old SIMD machines"
  Single-level of SIMD"
  Flat memory hierarchy"

  Data-parallel processors are here to stay"
  High performance"
  Huge architectural design space"

  Hierarchical data-parallelism"
  Radically different SIMD widths"

  Low cost flops enables new applications"
  OpenCL enables source compatible programming across

a wide variety of architectures"
  CPU: Intel Core i7, AMD Opteron, IBM Power7"
  GPU: AMD Radeon, Nvidia GeForce"
  Accelerators: IBM Cell Broadband Engine"

  Parallel code is not performance portable"
  Devil is in the architectural details"

  Dynamic versus static instruction scheduling"
  SIMD width"
  Scratchpad memories"
  Atomic operations"

  IBM Cell BE does not have atomic operations"

  We constructed a high-level data-parallel framework"
  Implemented with C++ classes and templates"

  Developer does not need to write OpenCL kernels"
  Element-wise operations"

  Arithmetic instructions"
  Reduction operators"

  We are not automatically flattening nested data-parallel kernels"
  NESL was built for different data-parallel processors than

available today"
  We generate kernels for anonymous element-wise functions"

  OpenCL uses Just-In-Time compilation"
  Just add additional sources for anonymous functions at

runtime"
  Generate vectorized and scalar implementations"
  Developer does not need to deal with low-level deals"

  Strip-mining and other unpleasant deals are handled
automatically"

  Data-parallel primitives optimized for each platform"
  Optimized scan"
  Optimized segmented scan"

  Modern SIMD machines are hierarchical "
  Multiple-levels of SIMD"
  Deep memory hierarchy"

  Software controlled memories too"
  Thread dispatch is relatively dynamic"

  Sparse matrix and dense vector"
  Common in natural systems"

  Classic flattened data-parallel benchmark"
  Compressed row format"

Euclidean distance	

  Euclidean distance between several vectors"

  Not all data-parallel accelerators support atomic
operations"
  Use sort and and scan instead"

Results	

  Flattening is essential when segments are shorter than the
native SIMD width"

  Performance of atomic memory operations is non-intuitive"
  Flattening hurts performance on the CPU"
  Nvidia GPU handles significant load imbalance without

flattening "

Future work	

  Performance of nested data-parallel code depends on segment

lengths"
  Runtime could dispatch select implementation at runtime"

  Integrate OpenCL backend into an existing programming
language such as Python or Scala"

  Use OpenCL as a data-parallel intermediate representation."
  Generate kernels based on system information"
  Optimized kernel generation for different system

architectures"
  Optimize primitives for each class of architectures "
  Construct more advanced applications using framework"

guarantee performance portability. The design space for data-parallel processors is very large. The orga-

nization of these processors spans several dimensions: number of processors, SIMD-width per processor,

memory hierarchy, atomic memory operation support, and instruction scheduling. Many design designs are

motivated by requirements to efficiently support computer graphics. Specifically, executing OpenGL or Di-

rectX shader programs requires significantly less hardware support than general-purpose computation. The

OpenCL extension system further complicates portability. In the tradition of OpenGL, OpenCL allows for

extensions. In particular, the baseline implementation of OpenCL does not support atomic memory opera-

tions. This makes the naive implementation of simple algorithms, such as histogram generation, difficult.

Without a high-level programming methodology, OpenCL is unlikely to successful due to the difficulties of

portable programming across a broad spectrum of architectures.

!"#$%#!&#$%#'"#(#&)#*#'"#(#&)#

Figure 1: Anonymous function from Euclidian dis-

tance benchmark

ocl.cl
~/cs264/report/

1/1
05/09/2011

__kernel void anon0(__global float *a, __global float *b,
__global float *y, int len)

{
 float t0[4] = {0.0f,0.0f,0.0f,0.0f};
 float t1[4] = {0.0f,0.0f,0.0f,0.0f};
 float4 ai, bi, yi;
 int idx = get_global_id(0);
 int m = (idx*4 + 3) > len ? len : (idx*4+3);
 for(int i=4*idx,c=0; i<m;i++,c++)
 {
 t0[c] = a[i];
 t1[c] = b[i];
 }
 ai.x=t0[0]; ai.y=t0[1]; ai.z=t0[2]; ai.w=t0[3];
 bi.x=t1[0]; bi.y=t1[1]; bi.z=t1[2]; bi.w=t1[3];
 yi = (ai−bi)*(ai−bi);
 t0[0]=yi.x; t0[1]=yi.y; t0[2]=yi.z; t0[3]=yi.w;
 for(int i=4*idx,c=0; i<m;i++,c++)
 {
 y[i] = t0[c];
 }
}

Figure 2: Vectorized anonymous kernel constructed

from lambda function

We believe ideas from functional programming are required for performance portability across OpenCL

platforms. Specifically, the map-reduce style of programming is an effective way of generating portable

code. Map tasks are particularly efficient because they closely match the underlying stream processing

paradigm used in modern graphics processors. Specifically, stream processing involves applying an element

wise function to each element of a set of data. The stream processing paradigm significantly reduces hard-

ware requirements, as memory accesses are uniform. Map functions are also likely to be quite simple which

presents too additional benefits. First, we can use anonymous functions to generate anonymous device ker-

nels. Anonymous kernels allow the programmer to express a computation without worrying about device

characteristics and OpenCL syntax. Second, map kernels are likely to be simple streaming kernels. We hope

the simplicity of map kernels allows the OpenCL device compiler to generate high performance machine

2

!" #" $" %" %" %" %"#"

#" #" #" #" #" #"#" #"

#" !" #" !" !" #"#" !"

&'()'*+',"&-.*"

/'*'0.+'"&'()'*+"12.(3"4'0*'2"

56,.+'"4'0*'2"

#" 7" %"#"

!" !" !" !" !" !"!" !"

#" 7" !" %" !" !"#" !"

Sorted Vector

Last element flag

Vector of ones

Segmented count

Empty histogram

Complete histogram

#" #" 7" $"

