PORTABLE DATA-PARALLEL PROGRAMMING IN
OPENCL
DaviD SHEFFIELD, KURT KEUTZER

BERKELEY PARLAB

Enabling portable data-parallel programming

Motivation Flattened data-parallelism Histogram
o Data-parallel processors are here to stay O Flattening worked well on old SIMD machines o Not all data-parallel accelerators support atomic
High performance Single-level of SIMD operations

Huge architectural design space Flat memory hierarchy
Hierarchical data-parallelism
Radically different SIMD widths
Low cost flops enables new applications
OpenCL enables source compatible programming across
a wide variety of architectures

Use sort and and scan instead

Instruction dispatch

CPU: Intel Core i7, AMD Opteron, IBM Power7 nterconnect
GPU: AMD Radeon, Nvidia GeForce ) ) ) Results
Accelerators: IBM Cell Broadband Engine O Modern SIMD machines are hierarchical
o Parallel code is not performance portable Multiple-levels of SIMD
Devil is in the architectural details Deep memory hierarchy )
Dynamic versus static instruction scheduling Software controlled memories too
SIMD width Thread dispatch is relatively dynamic

Scratchpad memories
Atomic operations
IBM Cell BE does not have atomic operations

A high-level

" 0 Importance of flattened data-parallelism is proportional to
framework for OpenCL expected segment length
Segments shorter than naive SIMD width will benefit from et
flattening Webbase

O We constructed a high-level data-parallel framework
9 P Trend towards longer SIMD vectors

Implemented with C++ classes and templates

: Nvidia G80: 8 wide SIMD
Developer does not need to write OpenCL kernels Nvidia GF104: 48 wide SIMD

Element-wise operations
Arithmetic instructions
Reduction operators

of1[2]a]e]s]s]7

O Sparse matrix and dense vector ”
o Common in natural systems '

o Classic flattened data-parallel benchmark

0 Compressed row format - lhily

1 s 9 5

Histogram results e results

o Flattening is essential when segments are shorter than the
native SIMD width

0 Performance of atomic memory operations is non-intuitive

Flattening hurts performance on the CPU

o Nvidia GPU handles significant load imbalance without
flattening

¥ ¥ ¥
s 2 13 [6]w0[u[sa

MM
[T
[TITrrry LILTTTLI
Reduction Scan Segmented Scan : : : 1 ’: |:> -
o We are not automatically flattening nested data-parallel kernels tlele
NESL was built for different data-parallel processors than
available today
We generate kernels for anonymous element-wise functions
OpenCL uses Just-In-Time compilation
Just add additional sources for anonymous functions at
runtime
Generate vectorized and scalar implementations
Developer does not need to deal with low-level deals
Strip-mining and other unpleasant deals are handled
automatically
o Data-parallel primitives optimized for each platform
Optimized scan
Optimized segmented scan

o

Future work

u] IPerf?r:mance of nested data-parallel code depends on segment
engths
o Runtime could dispatch select implementation at runtime

o0 Integrate OpenCL backend into an existing programming
language such as Python or Scala

0 Use OpenCL as a data-parallel intermediate representation.
o Generate kernels based on system information
O Optimized kernel generation for different system

architectures
o Optimize primitives for each class of architectures
o Construct more advanced applications using framework




