
BERKELEY PAR LAB BERKELEY PAR LAB

Using Computational Patterns to

Understand Heterogeneity

David Sheffield and Kurt Keutzer

and the PALLAS team

Michael Anderson, Bryan Catanzaro (Nvidia),

Katya Gonina, Chao-Yue Lai, Mark Murphy,

 Bor-Yiing Su, Narayanan Sundaram

1

BERKELEY PAR LAB

Motivation

 Future generations of microprocessesors are certain to have

heterogeneous elements

 But determining the precise mix of heterogeneity is difficult:

 Different microarchitectures to support the same ISA

• Large and small cores

 Significant coprocessor cores (eg, GPUs)

 Special purpose execution units

• ISA additions (eg Tensilica TIE)

• Autonomous execution units (eg next-route lookup in network

processors)

 Reconfigurable logic

 Computational patterns give a new perspective on identifying

heterogeneity to create new architectures

2

BERKELEY PAR LAB

Approach

 We will review the computational patterns

 We will identify key program features to best support the

computational patterns

 We will identify key micro-architectural elements that best support

these program features

 Show implications of these micro-architectural elements on

microprocessor-level heterogeneity

 Caveat: workload dependent: your mileage may vary

3

BERKELEY PAR LAB

Computational patterns

4

Structured Grid

Dense Matrix

Sparse Matrix

Spectral (FFT)

Monte Carlo

N-Body

Circuits

Dynamic Prog.

Backtrack / B&B

Finite State Mach.

Apps

Dwarves E
m

b
e
d

S
P

E
C

D
B

G
a
m

e
s

M
L

H
P

C

C
A

D

Health Image Speech Music Browser

Graph Algorithms

Graphical Models

Backtrack / B&B

BERKELEY PAR LAB

5

From applications

to architectures

C
o
m

p
u
ta

tio
n
a
l p

a
tte

rn
s

Applications Computational

 Patterns
Program features Architectures

Accelerators

BERKELEY PAR LAB

6

Program features

Stride

Streaming

Random

Loops

Blocks

Random

Instruction-level

Parallelism

Task parallelism

Data parallelism

Concurrency Opportunities

Data Access Pattern Instruction Access Pattern

The developer needs to be aware

of low-level application characteristics

to efficient map applications onto

heterogeneous platforms

BERKELEY PAR LAB

Patterns from the machine’s

perspective

 The differences we observed between dense and sparse linear
algebra can be mapped to the cube

 Microarchitectural features can be optimized for the dimensions
of the cube

• DMA for streaming

• Multithreaded processor for random accesses

7

Stride

Streaming

 Random

Data Access Pattern

 Sparse

Linear Algebra

 Dense

Linear Algebra

BERKELEY PAR LAB

Patterns from the machine’s

perspective

8

Dense linear algebra Sparse linear algebra

BERKELEY PAR LAB

Microarchitecture elements

 Memory subsystem
 Caches

 Software scratchpads

 DMA engines

 Coalescing hardware

 Processor core
configuration
 Issue width

• Wide out-of-order vs
scalar in-order

 Data parallel support
• SIMD width

• multithreaded execution

 System configuration

 Cache coherence

 Message passing

 NUMA

 Distribution of core

type

9

BERKELEY PAR LAB

Preliminary Dwarf Chart

 We presented 9 program features earlier

 Instruction access patterns

 Random

 Blocks

 Loops

 Data access patterns

 Random

 Stride

 Streaming

 Concurrency opportunities

 Data

 Task

 Instruction

 We are building a heatmap for program features

 Reflects what we know today

 Not complete

10

BERKELEY PAR LAB

Preliminary Dwarf Chart

11

Instruction access Data access Parallelism

Random Blocks Loops Random Strided Streaming Data Task Instruction

Dense linear algebra

Sparse linear algebra

Structured grids

Unstructured grids

Spectral methods

Particle methods

Monte Carlo methods

Combinational logic

Finite state machines

Backtrack and B&B

Graph algorithms

Dynamic
programming

BERKELEY PAR LAB

Conclusions

 Patterns help the developer determine “where does computation

want to happen”

 From our study of existing applications, we believe patterns can

guide exploration of applications on emerging heterogeneous

platforms

 New heterogeneous platforms will make the algorithmic design

space more complicated

 A disciplined programming methodology is required to fully

exploit these new platforms

12

