“m

PARALLEL COMPUTING LABORATOTRY

Using Computational Patterns to
Understand Heterogeneity

David Sheffield and Kurt Keutzer
and the PALLAS team
Michael Anderson, Bryan Catanzaro (= Nvidia),
Katya Gonina, Chao-Yue Lai, Mark Murphy,
Bor-Yiing Su, Narayanan Sundaram

Electrical Engineering and IVI Ot I Vatl O n

Computer Sciences

" Future generations of microprocessesors are certain to have
heterogeneous elements

® But determining the precise mix of heterogeneity is difficult:
= Different microarchitectures to support the same ISA
« Large and small cores
= Significant coprocessor cores (eg, GPUSs)
= Special purpose execution units
 |ISA additions (eg Tensilica TIE)

« Autonomous execution units (eg next-route lookup in network
Processors)

» Reconfigurable logic

" Computational patterns give a new perspective on identifying
heterogeneity to create new architectures

Electrical Engineering and / \ p ro a.C h

Computer Sciences

" We will review the computational patterns

" We will identify key program features to best support the
computational patterns

" We will identify key micro-architectural elements that best support
these program features

® Show implications of these micro-architectural elements on
microprocessor-level heterogeneity

® Caveat: workload dependent: your mileage may vary

Computational patterns

Apps Blo B ==
Slo| 12,199 T
Dwarves wimn|[a|O|=|IT|O | Health| Image Speech Music Browser

Graph Algorithm

Graphical Models

Backtrack / B&B

Finite State Mac

Circuits

Dynamic Prog.

Structured Grid

Dense Matrix

Sparse Matrix

Spectral (FFT)

Monte Carlo

N-Body

From applications %

to architectures
Applications Computational program features Architectures
Patterns
4 a !
O Vi
i s /
3
ge)
= t
s 5
D "4
Pixel Dependencies
=
@ 4
= |
: :
% In —
v

Electrical Engineering and
Computer Sciences

Program features

Instruction Access Pattern
Random

e —

Loops

/Blocks

Concurrency Opportunities
Data parallelism

!

—_—
7] Instruction-level
/ Parallelism

,/Task parallelism

Data Access Pattern
Random

/ Stride

’/Streaming

The developer needs to be aware

of low-level application characteristics
to efficient map applications onto
heterogeneous platforms

Patterns from the machine’s

nerspective

Data Access Pattern
Random

Sparse
Linear Algebra

/ —_

/ Stride
/

/ Dense
Streaming Linear Algebra

" The differences we observed between dense and sparse linear
algebra can be mapped to the cube

= Microarchitectural features can be optimized for the dimensions
of the cube

« DMA for streaming
« Multithreaded processor for random accesses

Patterns from the machine’s
nerspective

o

A L
Gme))

AIINA Y=

@',,M’

Coen
Dense linear algebra Sparse linear algebra

e Microarchitecture elements

Computer Sciences

= Memory subsystem = System configuration

= Caches = Cache coherence
= Software scratchpads = Message passing

= DMA engines

o e = NUMA
oalescing hardware = Distribution of core
= Processor core type

configuration

= |[ssue width

* Wide out-of-order vs
scalar in-order

= Data parallel support
« SIMD width
 multithreaded execution

Preliminary Dwarf Chart

® We presented 9 program features earlier

Instruction access patterns
= Random
= Blocks
= Loops
Data access patterns
= Random
= Stride
= Streaming
Concurrency opportunities
= Data
= Task
» |nstruction
We are building a heatmap for program features
» Reflects what we know today
= Not complete

10

Preliminary Dwarf Chart %

BERKELEY PAR LAB

Instruction access Data access Parallelism

Random [Blocks |[Loops [Random |Strided [Streaming|Data [Task |Instruction

Dense linear algebra

Sparse linear algebra

Structured grids

Unstructured grids

Spectral methods

Particle methods

Monte Carlo methods

Combinational logic

Finite state machines
Backtrack and B&B

Graph algorithms
Dynamic
programming

11

Conclusions

Computer Sciences

" Patterns help the developer determine “where does computation
want to happen”

®" From our study of existing applications, we believe patterns can
guide exploration of applications on emerging heterogeneous
platforms

® New heterogeneous platforms will make the algorithmic design
space more complicated

= A disciplined programming methodology is required to fully
exploit these new platforms

12

