
1/42

PRODUCTIVE GMM TRAINING
WITH SEJITS FOR SPEAKER

DIARIZATION

Katya Gonina, Henry Cook, Shoiab Kamil,
Gerald Friedland, Armando Fox, David Patterson

ParLab Retreat, June 2, 2011

2/42

The Meeting Diarist

3/42

Components of the Meeting Diarist

4/42

Speaker Diarization

Estimate “who spoke when” with no prior knowledge of

speakers, #of speakers, words, or language spoken.

Audio track:

Clustering:

Segmentation:

5/42

Speaker Diarization: Core Algorithm
BERKELEY PAR LAB

 Start with too many clusters (initialized randomly)

 Purify clusters by comparing and merging similar clusters

 Resegment and repeat until no more merging needed

6/42

Parallelization of Diarization

 Five versions (so far):

Initial code (2006): 0.333 x realtime (i.e., 1h audio =
3h processing)

Serially optimized (2008): 1.5 x realtime

Parlab retreat summer 2010: Multicore+GPU
parallelization: 14.3 x realtime

Parlab retreat winter 2011: GPU-only parallelization
250 x realtime (i.e., 1h audio = 14.4sec processing)

 -> Offline = online!

Parlab retreat summer 2011: SEJITized! [1]

 [1] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. CUDA-level Performance with Python-
level Productivity for Gaussian Mixture Model Applications. USENIX HotPar Workshop, 2011.

7/42

Speaker Diarization in Python

Yes

8/42

Speaker Diarization in Python

Yes

g.train(x)

g.train(x)

g.train(x)

new_gmm_list(M,D)

9/42

Gaussian Mixture Models & Training

10/42

Clustering with Gaussian Mixture Models

 GMM - probabilistic model for
clustering (audio) data

 Assumes the distribution of
observations follows a set
(mixture) of multidimensional
Gaussian distributions

 Each Gaussian in the mixture has a
mean () and a covariance ()
parameters

 Gaussians in the mixture are
weighted with weight

m

s

p

Example GMM in two dimensions

(Source: Dan Klein, UCB)

11/42

GMM Training using EM Algorithm

 Given a set of observations/events – find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (, ,) and classify observations

 Expectation Maximization (EM) Algorithm

 E step
 Compute probabilities of events given model parameters

 M step
 Compute model parameters given probabilities

 weights, mean, covariance matrix

 Iterate until convergence

 Covariance matrix – most computationally intensive step

m

s

p

12/42

Covariance Matrix Computation

 N – number of feature vectors, ~10K-100K

 D – feature vector dimension (19 for speaker diarization), ~10-100

 M – number of Gaussian components, ~1-128

 Matrix is symmetric – only compute the lower DxD/2 cells

M

-

my

y

m

-
*

13/42

Covariance Matrix Computation

 Opportunities for parallelism (independent computations):

 Each component’s covariance matrix (M)

 Each cell in a covariance matrix (DxD/2)

 Each event’s contribution to a cell in a covar matrix (N)

 -> Multiple code variants to perform the same computation

 in different ways

M

14/42

Core

 Two levels of parallelism:

 Work-groups – parallelized
across cores (CUDA threadBlock)

 Work-groups’ work-items –
executed on a single core,
utilizing within-core parallelism
(CUDA thread)

 Per-core local memory
Core

Core

Core

C
ac

h
e

C

ac
h

e

C
ac

h
e

Core

Core

Core

C
ach

e

C
ach

e

C
ach

e

Manycore Parallel Platform

15/42

Code Variants

16/42

Code Variants - Example

 Code variant 1:

 2D grid of work groups M x D x D/2

 Each work group is responsible for computing one cell
in the covariance matrix for one component

 Work item parallelization over events (N)

Work

item

Work

Group

c1

c2 c3

..

..

c7

c8 c9

..

..

[2]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of
Technology, 2010.

17/42

Covariance Matrix Computation –
Code Variants

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N events

 add nth contribution to c of m

Work group

Work item

Seq.
V1

18/42

Covariance Matrix Computation –
Code Variants Summary

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N events

 add nth contribution to c of m

 for each cell c in DxD/2 cells

 for each event n in N events

 for each component m in M comps

 add nth contribution to c of m

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N events

 add nth contribution to c of m

 for each block b in B event blocks

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N/B events

 add nth contribution to c of m

 for each component m in M comps

 for each block b in B event blocks

 sum partial contributions to m from b

Work group

Work item

Work group

Work item

Seq

Work group

Work item

Seq

Seq

Work item

Seq

Seq

V2 V1

V3

V4

Work group

19/42

Results – Code Variant Performance

GTX480

D = 19

20/42

Results – Code Variant Performance

GTX285

D = 19

21/42

Results - Code Variant Selection

 Using best-performing code variant gave 32%
average improvement in matrix computation time
compared to always using original hand-coded
variant (D: 1 to 36, M: 1 to 128, N: 10K to 150K)

 Performance gap increases with larger problem sizes
(75.6% for D=36, M=128, N=500,000)

22/42

Specialization

23/42

Specialization with ASP

 Given:

 Problem Dimensions (N, D, M)

 Platform Parameters (targeting Nvidia GPUs)
 Core count, shared memory size, SIMD width…

 Automatically select:

 Optimal code variant

 Optimal parameters (block size, number of blocks) for
that parallelization strategy

24/42

SEJITS Framework: Overview

Python on Host

X = Read in data

gmm = GMM()

gmm.train(X)

Template
files

CUDA
sources

C on Host
Train(){
 for(){
 launch
 launch
 launch
 }
}

CUDA on GPU

C sources .so’s

kernel

kernel

kernel

kernel

kernel

25/42

SEJITS Framework

 Python code that handles application

 Manipulates problem data, determines learning targets

 C/CUDA code that runs quickly

 Allocates GPU memory

 Performs main EM iterative loop

 Specializer (ASP)

 Selects appropriate code variant
(from history)

 Pulls in the template for the code
variant, parameterizes it and
compiles to binary

26/42

Separation of Concerns

Application

Specializer

ASP core

CodePy

PyCUDA

g.train()

and input

data C/CUDA

Train

code

variants ASP

Module

Utilities

Compiled

module

g.train()

call

Speech Diarizer

author

(PLL)

Specializer

author

(ELL)

SEJITS

team

3rd party

library

Python

Code

Variant

Selection

27/42

Speaker Diarization in Python

Python C

…..

g.train(x)

new_gmm_list(M,D)

28/42

Speaker Diarization in Python

Python C

…..

15x LOC

reduction

29/42

Results – Specializer Overhead

 Python AHC code is within 1.25x of pure C/CUDA
implementation performance

 C/CUDA AHC (from winter retreat) – 250x realtime

 SEJITized AHC ~ 200x realtime

 Time lost in:

 Outer loop and GMM creation in Python

 Data copying overhead from CPU to GPU

 GMM scoring in Python

30/42

Cilk Backend

 We have implemented the Cilk backend for GMM
training

 ASP selects version based on available hardware

 Current implementation ~100x realtime

 5-10% C code reused

 All specializer infrastructure reused

http://supertech.csail.mit.edu/cilk/

31/42

Results – Portability & Maintenance

 Specializes to two types of platforms (multi-core
CPU, Nvidia GPU) to support portability

 Exact same application code

 Reuse of infrastructure:

 Specializer creation and code variant selection
mechanism reused

 Maintaining the code for next generation of
hardware

 Task of specializer writer, transparent to the application
developer

32/42

Conclusion & Future Work

 SEJITized GMM training in Speaker Diarization
component of Meeting Diarist

 Specialized covariance matrix computation with
code variant selection to two platforms

 Currently a factor of 1.25x slower than pure C/CUDA
implementation (200 x faster than realtime)

 Future work:

 Further specialize train kernel

 SEJITize other components

 Improve code variant selection mechanism

33/42

Thank you!

Questions?

34/42

Backup Slides

35/42

Results – Specializer Overhead in AHC

 Initial invocation – 81% overhead dude to complier
invocations

 Future runs using automatically determined optimal
code variant achieve 17% performance improvement
over the original GPU implementation (V1)

36/42

ATLAS FFTW,
Spiral,
OSKI

ASP/GM
M

ASP/Sten
cil

Delite/
OptiML

Copperhe
ad

Autuning of
code

Based on
runtime
information

Based on
higher-
order func

Using
reusable
framework

Embedded
in HLL

ASP vs Auto-tuning Libraries

37/42

The shift to parallel processing

 Parallel processing is here

Intel Processor Clock Speed

“ This shift toward increasing parallelism
is not a triumphant stride forward based
on breakthroughs in novel software and
architectures for parallelism; instead,
this plunge into parallelism is actually a
retreat from even greater challenges
that thwart efficient silicon
implementation of traditional
uniprocessor architectures.
 - The Berkeley View

“

38/42

Writing Fast Code is Hard

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 128 256 384 512 640 768

F
ra

ct
io

n
 o

f A
ri

th
m

et
ic

 P
ea

k

Dimension of Matrices

naïve blocking

(unrolling, explicit vectorization,
few levels of blocking)

ACML (vendor-provided binary)

an optimized code

Dense Matrix Multiply (V. Volkov)

39/42

Finding Best Implementation is Hard

Naïve

implementation

Implementation

Based on

structure of

data
Best

performing

Figure from R. Vuduc

40/42

Productivity vs Performance

 Scientists and domain experts prefer to use high-
level languages such as Python or MATLAB

 However, to achieve sufficient performance,
computationally-intensive parts of applications must
eventually be rewritten in low-level languages

 In addition, parallel platform details and input
parameters determine the best-performing parallel
implementation

41/42

Implementation Gap

HW Platform

Target
Application

42/42

Outline

 SEJITS approach

 Gaussian Mixture Model & Applications

 Covariance Matrix Computation & Code Variants

 Specialization

 Results

 Conclusion & Future Work

43/42

Selective Embedded Just-In-Time
Specialization (SEJITS)

Key Idea: Generate, compile, and execute

high performance parallel code at runtime

using code transformation, introspection,

variant selection and other features of

high-level languages.

Invisibly to the user.

44/42

Selective Embedded JIT Specialization
(SEJITS)

 Leverage patterns to bridge productivity and
efficiency

 PLL (productivity-level language, eg Python) for
applications

 “Specializers” generate ELL (efficiency-level
language) code targeted to hardware

 Code generation can happen at runtime

 Specializers can incorporate autotuning

 Think: pattern-specific embedded DSLs

 ELL performance with PLL effort

44

45/42

.py

OS/HW

f() @h()

Specializer

.c

In
te

rp
re

te
r

@g()

SEJITS

Productivity app

HW Info

.so

cc/ld

cache

Selective Embedded JIT Specialization
(SEJITS)

ASP – A SEJITS
for Python

46/42

Applications of Gaussian Mixture Models

 Applications

 Can be used to cluster/classify any sequence of observations

 Speech Recognition – speaker classification, acoustic
modeling for speech recognition

 Computer Vision – image segmentation, hand writing
recognition

 Biology – flow cytometry

 Data mining – topic classification

 in web documents

 Many more…

47/42

Results – Specializer Overhead

 Application example – Agglomerative Hierarchical
Clustering for Speaker Diarization

 Uses GMMs to represent distribution of audio features
for speakers in a recorded meeting

 Iteratively trains GMMs using different number of
components each time and measuring which number of
components best fits the data

 Number of components in the best GMM corresponds
to number of speakers in the meeting

48/42

Conclusions & Future Work

 ASP framework encapsulates code variant selection
mechanisms and handcrafted templates to:

 Allow domain expert to stay in the high-level
language domain and focus on the application

 Obtain high performance from expert-tuned code

 Example in Gaussian Mixture Model Applications

 Performance benefit of specialization outweighs the
overhead of Python and the JIT process

 Expand to:

 more platforms, applications, patterns

 other code variant selection mechanisms

49/42

Results – Version Comparison (Raw CUDA)

GTX480 – Varying D

50/42

Results – Version Comparison (Raw CUDA)

GTX285 vs. 480

51/42

SEJITS Framework: Current Implementation

 ASP framework
 C and CUDA compiling with CodePy (using PyCuda)

 PyUBLAS to eliminate copies between C and Python

 Version selection based on previous timings

 Evaluation platforms:
 GTX480 (Fermi)

 14 SM, 32 SIMD, 48K shared mem, 3GB DRAM

 GTX 285
 30 SM, 8 SIMD, 16K shared mem, 1GB DRAM

 CUDA SDK 3.2

 NVCC 3.2

52/42

Covariance Matrix Computation –
Code Variants

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N events

 add nth contribution to c of m

Work group

Work item

Seq
V1

 for each cell c in DxD/2 cells

 for each event n in N events

 for each component m in M comps

 add nth contribution to c of m

Work group

Work item

Seq
V2

…..

