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The Meeting Diarist 
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Components of the Meeting Diarist 
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Speaker Diarization 

Estimate “who spoke when” with no prior knowledge of 

speakers, #of speakers, words, or language spoken. 

Audio track: 

Clustering: 

Segmentation: 
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Speaker Diarization: Core Algorithm 
BERKELEY PAR LAB 

 Start with too many clusters (initialized randomly) 

 Purify clusters by comparing and merging similar clusters 

 Resegment and repeat until no more merging needed 
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Parallelization of Diarization 

 Five versions (so far): 

Initial code (2006): 0.333 x realtime (i.e., 1h audio = 
3h processing) 

Serially optimized (2008): 1.5 x realtime 

Parlab retreat summer 2010: Multicore+GPU 
parallelization: 14.3 x realtime 

Parlab retreat winter 2011: GPU-only parallelization 
250 x realtime (i.e., 1h audio = 14.4sec processing) 

 -> Offline = online! 

Parlab retreat summer 2011: SEJITized! [1] 

 [1] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. CUDA-level Performance with  Python-
level Productivity for Gaussian Mixture Model Applications. USENIX HotPar Workshop, 2011.  
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Speaker Diarization in Python 

Yes 
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Speaker Diarization in Python 

Yes 

g.train(x) 

g.train(x) 

g.train(x) 

new_gmm_list(M,D) 
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Gaussian Mixture Models & Training 
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Clustering with Gaussian Mixture Models 

 GMM - probabilistic model for 
clustering (audio) data  

 Assumes the distribution of 
observations follows a set 
(mixture) of multidimensional 
Gaussian distributions 

 Each Gaussian in the mixture has a 
mean (   ) and a covariance (   ) 
parameters 

 Gaussians in the mixture are 
weighted with weight  
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Example GMM in two dimensions 

(Source: Dan Klein, UCB) 
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GMM Training using EM Algorithm 

 Given a set of observations/events – find the maximum 
likelihood estimates of the set of Gaussian Mixture 
parameters (   ,    ,      ) and classify observations 

 Expectation Maximization (EM) Algorithm 

 E step 
 Compute probabilities of events given model parameters 

 M step 
 Compute model parameters given probabilities 

 weights, mean, covariance matrix  

 Iterate until convergence 

 Covariance matrix – most computationally intensive step 
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Covariance Matrix Computation 

 N – number of feature vectors, ~10K-100K 

 D – feature vector dimension (19 for speaker diarization), ~10-100 

 M – number of Gaussian components, ~1-128 

 Matrix is symmetric – only compute the lower DxD/2 cells 
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Covariance Matrix Computation 

 Opportunities for parallelism (independent computations): 

 Each component’s covariance matrix (M) 

 Each cell in a covariance matrix (DxD/2) 

 Each event’s contribution to a cell in a covar matrix (N) 

 -> Multiple code variants to perform the same computation 

      in different ways 

 

M 
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Core 

 Two levels of parallelism: 

 Work-groups – parallelized 
across cores (CUDA threadBlock) 

 Work-groups’ work-items – 
executed on a single core, 
utilizing within-core parallelism 
(CUDA thread) 

 Per-core local memory 
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Manycore Parallel Platform 
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Code Variants 
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Code Variants - Example 

 Code variant 1: 

 2D grid of work groups M x D x D/2 

 Each work group is responsible for computing one cell 
in the covariance matrix for one component 

 Work item parallelization over events (N) 

Work 

item 

Work 

Group 

c1 

c2 c3 

.. .. .. 

.. .. .. .. 

c7 

c8 c9 

.. .. .. 

.. .. .. .. 

[2]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of 
Technology, 2010.  
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Covariance Matrix Computation –  
Code Variants 

 

  for each component m in M comps 

    for each cell c in DxD/2 cells 

       

      for each event n in N events 

       

        add nth contribution to c of m 

Work group 

Work item 

Seq. 
V1 
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Covariance Matrix Computation –  
Code Variants Summary 

 

  for each component m in M comps 

    for each cell c in DxD/2 cells 

       

      for each event n in N events 

       

        add nth contribution to c of m 

  

  for each cell c in DxD/2 cells  

     

    for each event n in N events 

       

      for each component m in M comps 

        add nth contribution to c of m 

 

  for each component m in M comps 

     

    for each cell c in DxD/2 cells 

       

      for each event n in N events 

        add nth contribution to c of m 

 

   

  for each block b in B event blocks 

    for each component m in M comps 

   

      for each cell c in DxD/2 cells 

       

        for each event n in N/B events 

          add nth contribution to c of m 

 

  for each component m in M comps 

    for each block b in B event blocks 

      sum partial contributions to m from b 

Work group 

Work item 

Work group  

Work item 

Seq 

Work group 

Work item 

Seq 

Seq 

Work item 

Seq 

Seq  

V2 V1 

V3 

V4 

Work group  
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Results – Code Variant Performance 

GTX480 

D = 19 
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Results – Code Variant Performance 

GTX285 

D = 19 
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Results - Code Variant Selection 

 Using best-performing code variant gave 32% 
average improvement in matrix computation time 
compared to always using original hand-coded 
variant (D: 1 to 36, M: 1 to 128, N: 10K to 150K) 

 Performance gap increases with larger problem sizes 
(75.6% for D=36, M=128, N=500,000) 
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Specialization 
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Specialization with ASP 

 Given: 

 Problem Dimensions (N, D, M) 

 Platform Parameters (targeting Nvidia GPUs) 
 Core count, shared memory size, SIMD width… 

 Automatically select: 

 Optimal code variant 

 Optimal parameters (block size, number of blocks) for 
that parallelization strategy 
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SEJITS Framework: Overview 

Python on Host 
 
 
 
 

X = Read in data 
 
 

gmm = GMM() 
 
 

gmm.train(X) 

Template 
files 

CUDA 
sources 

C on Host 
Train(){ 
 for(){
 launch 
 launch 
 launch 
 } 
} 

CUDA on GPU 

C sources .so’s 

kernel 

kernel 

kernel 

kernel 

kernel 
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SEJITS Framework 

 Python code that handles application 

 Manipulates problem data, determines learning targets 

 C/CUDA code that runs quickly 

 Allocates GPU memory 

 Performs main EM iterative loop 

 Specializer (ASP) 

 Selects appropriate code variant  
(from history) 

 Pulls in the template for the code 
variant, parameterizes it and 
compiles to binary 
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Separation of Concerns 

Application 

 

 

 

 

Specializer 

 

 

 

ASP core 

 

 

 

CodePy 

PyCUDA 

 

 

 

g.train() 

and input 

data C/CUDA 

Train 

code 

variants ASP 

Module 

Utilities 

Compiled 

module 

g.train() 

call 

Speech Diarizer 

author 

(PLL) 

Specializer 

author 

(ELL) 

SEJITS 

team 

3rd party 

library 

Python 

Code 

Variant 

Selection 
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Speaker Diarization in Python 

Python C 

….. 

g.train(x) 

new_gmm_list(M,D) 
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Speaker Diarization in Python 

Python C 

….. 

15x LOC 

reduction 
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Results – Specializer Overhead 

 Python AHC code is within 1.25x of pure C/CUDA 
implementation performance  

 C/CUDA AHC (from winter retreat) – 250x realtime 

 SEJITized AHC ~ 200x realtime 

 Time lost in: 

 Outer loop and GMM creation in Python  

 Data copying overhead from CPU to GPU 

 GMM scoring in Python 

 



30/42 

Cilk Backend  

 We have implemented the Cilk backend for GMM 
training  

 ASP selects version based on available hardware 

 Current implementation ~100x realtime 

 5-10% C code reused 

 All specializer infrastructure reused 

 

http://supertech.csail.mit.edu/cilk/ 



31/42 

Results – Portability & Maintenance 

 Specializes to two types of platforms (multi-core 
CPU, Nvidia GPU) to support portability 

 Exact same application code 

 Reuse of infrastructure: 

 Specializer creation and code variant selection 
mechanism reused  

 Maintaining the code for next generation of 
hardware 

 Task of specializer writer, transparent to the application 
developer 
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Conclusion & Future Work 

 SEJITized GMM training in Speaker Diarization 
component of Meeting Diarist 

 Specialized covariance matrix computation with 
code variant selection to two platforms 

 Currently a factor of 1.25x slower than pure C/CUDA 
implementation (200 x faster than realtime)  

 Future work: 

 Further specialize train kernel 

 SEJITize other components 

 Improve code variant selection mechanism 
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Thank you! 
 
 
Questions? 
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Backup Slides 
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Results – Specializer Overhead in AHC 

 Initial invocation – 81% overhead dude to complier 
invocations 

 Future runs using automatically determined optimal 
code variant achieve 17% performance improvement 
over the original GPU implementation (V1) 
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ATLAS FFTW, 
Spiral, 
OSKI 

ASP/GM
M 

ASP/Sten
cil 

Delite/ 
OptiML 

Copperhe
ad 

Autuning of 
code 

Based on 
runtime 
information 

Based on 
higher-
order func 

Using 
reusable 
framework 

Embedded 
in HLL 

ASP vs Auto-tuning Libraries 
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The shift to parallel processing 

 Parallel processing is here 
 
 

  

Intel Processor Clock Speed 

“    This shift toward increasing parallelism 
is not a triumphant stride forward based 
on breakthroughs in novel software and 
architectures for parallelism; instead, 
this plunge into parallelism is actually a 
retreat from even greater challenges 
that thwart efficient silicon 
implementation of traditional 
uniprocessor architectures. 
  - The Berkeley View 
 

“ 
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Writing Fast Code is Hard 
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an optimized code 

Dense Matrix Multiply (V. Volkov) 
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Finding Best Implementation is Hard 

Naïve 

implementation 

Implementation 

Based on 

structure of 

data 
Best 

performing 

Figure from R. Vuduc 
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Productivity vs Performance 

 Scientists and domain experts prefer to use high-
level languages such as Python or MATLAB 

 

 However, to achieve sufficient performance, 
computationally-intensive parts of applications must 
eventually be rewritten in low-level languages 

 

 In addition, parallel platform details and input 
parameters determine the best-performing parallel 
implementation 
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Implementation Gap 

HW Platform 

Target  
Application 
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Outline 

 SEJITS approach 

 Gaussian Mixture Model & Applications 

 Covariance Matrix Computation & Code Variants 

 Specialization 

 Results 

 Conclusion & Future Work 
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Selective Embedded Just-In-Time 
Specialization (SEJITS) 

Key Idea: Generate, compile, and execute 

high performance parallel code at runtime 

using code transformation, introspection, 

variant selection and other features of 

high-level languages. 

 

Invisibly to the user. 
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Selective Embedded JIT Specialization 
(SEJITS) 
 

 Leverage patterns to bridge productivity and 
efficiency 

 PLL (productivity-level language, eg Python) for 
applications  

  “Specializers” generate ELL (efficiency-level 
language) code targeted to hardware 

 Code generation can happen at runtime 

 Specializers can incorporate autotuning 

 Think: pattern-specific embedded DSLs  

  ELL performance with PLL effort 

44 
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.py 
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cache 

Selective Embedded JIT Specialization 
(SEJITS) 

ASP – A SEJITS 
for Python 
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Applications of Gaussian Mixture Models 

 Applications 

 Can be used to cluster/classify any sequence of observations 

 Speech Recognition – speaker classification, acoustic 
modeling for speech recognition 

 Computer Vision – image segmentation, hand writing 
recognition  

 Biology – flow cytometry  

 Data mining – topic classification  

     in web documents  

 Many more… 
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Results – Specializer Overhead 

 Application example – Agglomerative Hierarchical 
Clustering for Speaker Diarization 

 Uses GMMs to represent distribution of audio features 
for speakers in a recorded meeting 

 Iteratively trains GMMs using different number of 
components each time and measuring which number of 
components best fits the data 

 Number of components in the best GMM corresponds 
to number of speakers in the meeting 
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Conclusions & Future Work 

 ASP framework encapsulates code variant selection 
mechanisms and handcrafted templates to: 

 Allow domain expert to stay in the high-level 
language domain and focus on the application 

 Obtain high performance from expert-tuned code 

 Example in Gaussian Mixture Model Applications 

 Performance benefit of specialization outweighs the 
overhead of Python and the JIT process 

 Expand to: 

 more platforms, applications, patterns 

 other code variant selection mechanisms 
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Results – Version Comparison (Raw CUDA) 

GTX480 – Varying D 
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Results – Version Comparison (Raw CUDA) 

GTX285 vs. 480 
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SEJITS Framework: Current Implementation 

 ASP framework 
 C and CUDA compiling with CodePy (using PyCuda) 

 PyUBLAS to eliminate copies between C and Python 

 Version selection based on previous timings 

 

 Evaluation platforms:  
 GTX480 (Fermi) 

 14 SM, 32 SIMD, 48K shared mem, 3GB DRAM 

 GTX 285 
 30 SM, 8 SIMD, 16K shared mem, 1GB DRAM 

 CUDA SDK 3.2 

 NVCC 3.2 
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Covariance Matrix Computation –  
Code Variants 

 

  for each component m in M comps 

    for each cell c in DxD/2 cells 

       

      for each event n in N events 

       

        add nth contribution to c of m 

Work group 

Work item 

Seq 
V1 

 for each cell c in DxD/2 cells  

     

    for each event n in N events 

       

      for each component m in M comps 

        add nth contribution to c of m 

Work group  

Work item 

Seq 
V2 

….. 


