PRODUGHVE GIVIIVIIRAINING
WITH SEJITIS FOR SPEAKER
DIARIZATION

Katya Gonina, Henry Cook, Shoiab Kamil,
Gerald Friedland, Armando Fox, David Patterson

ParLab Retreat, June 2, 2011

A
J\

N -Yala

Applet Viewer: jokeomat.jokeomat

Video

00 Filter

Filter by Keyword:

OK

Filter by Person:

V! Jerry

V! George

| female

V! Elaine

V! male

\‘

Navigation

Top-5 Punchlines

Punchlines

Dialog |

l"lf

Applet started.

2/42

|

)) \ Components of the Meeting Diarist

-

"who said what"

ho spoke when" higher-level analysis

Audio
Signal

"what was said"

levant W "what are the
Scraping main points"

"what's relevant
to this"

3/42

Audio track:

Segmentation:

Clustering:

l

Speaker A

Speaker B

Speaker B

Estimate “who spoke when” with no prior knowledge of
speakers, #of speakers, words, or language spoken.

442

‘ Initialization '

‘ (Re-)Training ' Yes
lerge two
' Clusters?

1

I (Re-)Alignment \

5/42

= Five versions (so far):

< Initial code (2006): 0.333 x realtime (i.e., 1h audio =
3h processing)

*Seria

< Parla
paral

% Parla

ly optimized (2008): 1.5 x realtime

O retreat summer 2010: Multicore+GPU
elization: 14.3 x realtime

0 retreat winter 2011: GPU-only parallelization

250 X realtime (i.e., 1h audio = 14.4sec processing)

\/
0’0 - >

Offline = online!

< Parlab retreat summer 2011: SEJITized! [1]

[1] H. Cook, E. Goning, S. Kamil, G. Friedland, D. Patterson, A. Fox. CUDA-level Performance with Python-
level Productivity for Gaussian Mixture Model Applications. USENIX HotPar Workshop, 2011. 6/42

er Diarization in Python

def AHC(self):

Get the events, divide them into an initial k clusters and train each GMM on a cluster
per_cluster = self.N/self.init_num_clusters
init_training = zip(self.gmm_list,np.vsplit(self.X, range(per_cluster, self.N, per_cluster)))
for g, x in init_training:

g.train(x)

Initialization

Pertorm hierarchical agglomeration based on BIC scores
b = 1.
while (best_BIC_score » @ and len(self.gmm_list) » 1):

num_clusters = len(self.gmm_list)

Resegment data based on likelihood scoring

likelihoods = self.gmm_list[@].score(self.X)

for g in self.gmm_list[1:]:

likelihoods = np.column_stack(({likelihoods, g.score (self.X)))
i — i i Cavic—1

(Re-)Training

Across 2.5 secs of observations, vote on which cluster they should be associated with
split_events = split_events_based_on_wotes(most_likely, self.XD

for g, data in split_ewvents:
g.trainCdata)

Score all pairs of GMMs using BIC
best_merged_gmm = None
best_BIC_score = ©.9@

merged_tuple = None

(for gmmlidx in range(len(iter_bic_list)): \
for gmm2idx in range(gmmlidx+1, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
g2, d2 = iter_bic_list[gmm2idx]
score = 0.9 &
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate((dl, d2)))
if score » best_BIC_score:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)

\ best_BIC_score = score J

ul ! i AAtds mnd e

if best_BIC_score > 0.0: l
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
i d_amm?

7/42

def AHC(self):

Ge "s and train each GMM on a cluster

?:L'; n eW_g m m_l I St(M[D) wge(per_cluster, self.N, per_cluster)))
for -
g.train(x)

Pertorm hierarchical agglomeration based on BlL scores

b = 1.

while (best_BIC_score » @ and len(self.gmm_list) » 1):
num_clusters = len(self.gmm_list)
Resegment data based on likelihood scoring

likelihoods = self.gmm_list[@].score(self.X)
for g in self.gmm_list[1:]:
likelihoods = np.column_stack(({likelihoods, g.score (self.X)))

Cawic—10

Across 2.5 secs of observations, vote on which cluster they should be associated with
split_ _on_votes(most_likely, self.X)

for g, g .traln(X)

(Re-)Training

Score all pairs of GMMs using BIC
best_merged_gmm = None

best_BIC score = 0.0

merged_tuple = None

(for gmmlidx in range(len(iter_bic_list)): \
for gmm2idx in range(gmmlidx+1, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
g2, d2 = iter_bic_lis+Famm2idv]
score = 0.9 .
new_gmm, score = com g _tra N (X) 3. concatenate((dl, dZ)))
if score > best_BIC_:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)

\ best_BIC_score = score J

Gdats made

A

P —

if best_BIC_score > 0.0:

self.gmm_list.remove(merged_tuple[@])

self.gmm_list.remove(merged_tuple[1])
i d_amm?

8/42

Gaussian Mixture Models & Training

9/42

» GMM - probabilistic model for
clustering (audio) data
3

Assumes the distribution of
observations follows a set
(mixture) of multidimensional
Gaussian distributions

Each Gaussian in the mixture has a
mean (/) and a covariance (s)
parameters

Gaussians in the mixture are
weighted with weight O

frequency of second formant/Hz

4000

3500

3000

.§:

=
a 2 8
o "t Rl S P -
- e LR N § odid s -
- o o= . ?
L (e R Py -l -
4 1% g0 P Al . <Toaas >
* o » ° v o) oe g ==
’ 59 = a7 - g -3
T 98° ol ol o - °
2 3 %) L Hg e & = o =
(N 0 o5 2 P e L g > S,
o 2 : CC] .
- - .
. \
, - \
- -
@
Son® >
g -
A ° » L
< ' -
. " \
e - &
e
° - o,
® B s \ ¥
<
.
~ ..‘ - }
s
-
- -
-
\ . 1
-
s

:

500

KEY
beat
bit
« bet
bat
* bum
« but
s« rock
o ball
boot
» put

|
0 200 400 600 800 1000 1200
frequency of first formant/Hz

Example GMM in two dimensions
(Source: Dan Klein, UCB)

10/42

= Given a set of observations/events — find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (1, s, p) and classify observations
= Expectation Maximization (EM) Algorithm
= Estep
= Compute probabilities of events given model parameters

= Mstep

= Compute model parameters given probabilities
= weights, mean, covariance matrix

" [terate until convergence

= Covariance matrix — most computationally intensive step

11/42

N — number of feature vectors, ~10K-100K

D —feature vector dimension (19 for speaker diarization), ~10-100

M — number of Gaussian components, ~1-128

Matrix is symmetric — only compute the lower DxD/2 cells

N

(Yn — Bk) (Yn — k) P g (K |y, 6P)

= Opportunities for parallelihgm (independent computations):
= Each component’s covariance matrix (M)
= Each cell in a covariance matrix (DxD/2)
= Each event’s contribution to a cell in a covar matrix (N)
= -> Multiple code variants to perform the same computation
in different ways

13/42

= Two levels of parallelism:

= Work-groups — parallelized
across cores (CUDA threadBlock)

= Work-groups’ work-items —
executed on a single core,
utilizing within-core parallelism
(CUDA thread)

= Per-core local memory

14/42

Code Variants

15/42

= Code variant 1:

= 2D grid of work groups M x D x D/2

» Each work group is responsible for computing one cell
in the covariance matrix for one component

= Work item parallelization over events (N)

C3

Work
item
Work
Group D "

[2]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of

Technology, 2010.

Code Variants

for each component m in M comps
for each cell ¢ in DxD/2 cells —>\Work group
¢ c7
fdr each event nin N events —>Work item L2 =1 £8llcq
Vladc nth contribution to ¢ of m —>Seq. o fe el fe L S

for each cell ¢ in DxD/2 cells —> Work group

for each event n in N events

-> Work item

for each component m in M comps
add nth contribution to ¢ of m |5 Seq

V2

17/42

for each component m in M comps

for each cell c in DxD/2 cells

—> Work group

for each cell ¢ in DxD/2 cells =>\Work group|
for each event nin N events = Work item
fgr each event n in N events - Work item
forreach component m in M comps
Vladc nth contribution to ¢ of m -> Seq \/2afid nth contribution to ¢ of m - Seq
for each component m in M comps =>Work group| for each block b in B event blocks ™
for each component m in M comps Work group
for each cell ¢ in DxD/2 cells =>\Work item _
fo each cell ¢ in DxD/2 cells —>Work item
for each event nin N events —> Seq
add nth contribution to ¢ of m Vf r egach event n in N/B events —> Seq
add| nth contribution to ¢ of m
for each component m in M comps —>
for each block b in B event blocks Seq
V3 sum partial contributions to m from b

18/42

)) \g Results — Code Variant Performance

optimal code version names

100,000 |
95,000
90,000{|
85,000
80,000
75,000
70,0001
65,0001
60,000
55,0001
50,000
45,000
40,0001
35,0001
30,0001
25,0001
20,0001
15,000 {|
10,000 {|
5 1 11 f2 13 1415 1612222 262?28293 3133 3435 36333 12344
D
mV1e V3 V4

)) \g Results — Code Variant Performance

optimal code version names

100,000
95,0001
90,0001f 5
85,000
80,000
75,000
70,000
65,0001
60,000
55,000
50,000 i
45,0001
40,0001
35,000
30,000
25,000
20,0001}
15,000
10,000
1 11 —m 2 2 2 26 27 23 29 3 31 3 3 34 35 36 3 3 3 40 41 42 3 45 46 4
D

mVie V3 L V4

= Using best-performing code variant gave 32%
average improvement in matrix computation time
compared to always using original hand-coded
variant (D: 1to 36, M: 1t0 128, N: 10K to 150K)

= Performance gap increases with larger problem sizes
(75.6% for D=36, M=128, N=500,000)

21/42

Specialization

22/42

= Given:
= Problem Dimensions (N, D, M)

» Platform Parameters (targeting Nvidia GPUs)
= Core count, shared memory size, SIMD width...

= Automatically select:

= Optimal code variant

» Optimal parameters (block size, number of blocks) for
that parallelization strategy

23/42

/ \ Template IICUDA / \

files ' ’sources

l kernel

X = Read in data C sources 0 kernel

|

gmm = GMM() -

train(X
gmm.train(X) aunch

launch

launch

}

24[42

MIN
SEJITS Framework

= Python code that handles application

= Manipulates problem data, determines learning targets
= (C/CUDA code that runs quickly

= Allocates GPU memory

= Performs main EM iterative loop

= Specializer (ASP)
= Selects appropriate code variant Template
(from history) l

» Pullsinthe template forthecode | =i 0 couces
variant, parameterizes it and
compiles to binary

gmm = GMM()

gmm.train(X) launch

launch

25/42

Speech Diarizer Specializer

author author SEJITS 3'd party
(PLL) (ELL) team library
Application Specializer ASP core CodePy

PyCUDA

Utilities

g.train() |€
call

26/42

Python

def AHC(self):

Get th pch GMM on a cluster
per_clus

i) new_gmm_list(M, D) u&
g. traTexy

Perform hierarchical agglomeration based on BIC scores
best_BIC_score = 1.8
while (best_BIC_score > @ and len(self.gmm_list) > 1):

num_clusters = len(self.gmm_list)

Resegment data based on likelihood scoring
likelihoods = self.gmm_list[@].score(self.X)

for g in self.gmm_list[1:]:
likelihoods = np.column_stack((likelihoods, g.score (self.X)J))
most_likely = likelihoods.argmex(axis=1)

Across 2.5 secs of observations, vote on whig d be associated with
spli rvotes(most_likely, self.X)

| g.train(x)

Score all pairs of GMMs using BIC
best_merged_gmm = None
best_BIC_score = 0.8

merged_tuple = None

for gmmlidx in range(len(iter_bic_list)):
for gmm2idx in range(gmmlidx+l, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
gz, d2 = iter_bic_list[gmm2idx]
score = 0.0
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate((dl, d2)))
if score > best_BIC score:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)
best_BIC_score = score

Merge the winning candidate pair

if best_BIC_score > 0.@:
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
self.gmm_list.append(best_merged_gmm)

27/42

\ Speaker Diarization in Python

Python C

def AHC(self):

Get the events, divide them into an initial k clusters and train each GMM on a cluster

per_cluster = self.N/self.init_num_clusters

init_training = zip(self.gmm_list,np.vsplit(self.X, range(per_cluster, self.N, per_cluster)))

for g, x in init_training:
g.train(x)

Perform hierarchical agglomeration based on BIC scores
best_BIC_score = 1.8
while (best_BIC_score > @ and len(self.gmm_list) > 1):

num_clusters = len(self.gmm_list)

Resegment data based on likelihood scoring
likelihoods = self.gmm_list[@].score(self.X)
for g in self.gmm_list[1:]:

likelihoods = np.column_stack((likelihoods, g.sco
most_likely = likelihoods.argmex(axis=1)

Across 2.5 secs of observations, vote on whic
split_events = split_events_based_on_votes(most_like

for g, data in split_events:
g.train(data)

Score all pairs of GMMs using BIC
best_merged_gmm = MNone
best_BI(_score = 8.9

merged_tuple = None

for gmmlidx in range(len(iter_bic_list)):
for gmm2idx in range(gmmlidx+l, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
g2, d2 = iter_bic_list[gmm2idx]
score = 0.0
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate((dl, d2)))
if score > best_BIC_score: T
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)
best_BIC_score = score

Merge the winning candidate pair

if best_BIC_score > 0.@:
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
self.gmm_list.append(best_merged_gmm)

28/42

= Python AHC code is within 1.25x of pure C/CUDA
implementation performance

* C/CUDA AHC (from winter retreat) — 250x realtime
= SEJITized AHC ~ 200x realtime
= Time lostin:

* Quterloop and GMM creation in Python
» Data copying overhead from CPU to GPU
* GMM scoring in Python

29/42

= We have implemented the Cilk backend for GMM
training

= ASP selects version based on available hardware
= Current implementation ~100x realtime

" 5-10% C code reused

= All specializer infrastructure reused

ARk
J J ;

$ 8 daamp ¥y
%

http://supertech.csail.mit.edu/cilk/

30/42

= Specializes to two types of platforms (multi-core
CPU, Nvidia GPU) to support portability

= Exact same application code

= Reuse of infrastructure:

= Specializer creation and code variant selection
mechanism reused

= Maintaining the code for next generation of
hardware

= Task of specializer writer, transparent to the application
developer

31/42

ZARTAN

L\

= SEJITized GMM training in Speaker Diarization
component of Meeting Diarist

= Specialized covariance matrix computation with
code variant selection to two platforms

= Currently a factor of 1.25x slower than pure C/CUDA
implementation (200 x faster than realtime)

= Future work:
* Further specialize train kernel
= SEJITize other components
= Improve code variant selection mechanism

32/42

Thank you!

Questions?

33/42

Backup Slides

34/42

= |nitial invocation —81% overhead dude to complier
Invocations

= Future runs using automatically determined optimal
code variant achieve 17% performance improvement
over the original GPU implementation (V1)

Runtime (seconds)
0 2 4 6 8 10 12 14 16 18 20
| | | | | |

crscunav:
SOTS VL (uncachec) MMM IS

SEJITS V1 (cached)

SEJITS V4-B32 (cached) F o

B CUDA Python B NVCC

35/42

"L AsPusAuto-tuning Libraries

ATLAS ASP/GM | ASP/Sten | Delite/ Copperhe
M cil [
Autuning of
code y

Based on
runtime
information

Based on
higher-
order func
Using
reusable
framework

Embedded
in HLL

= Parallel processing is here

This shift toward increasing parallelism
is not a triumphant stride forward based
on breakthroughs in novel software and
architectures for parallelism; instead,
this plunge into parallelism is actually a
retreat from even greater challenges
that thwart efficient silicon
implementation of traditional
uniprocessor architectures.

- The Berkeley View

®Corei7

% BCore2
X Pentium 4
X XPentium I1I
g Pentium II
X KPentium

=80486
80386
©80286
8088
8086
8080
8008
4004

¢ %

Intel Processor Clock Speed

37/42

Fraction of Arithmetic Peak

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Dense Matrix Multiply (V. Volkov)

povy

ACML (vendor-provided binary)

vy

A w
had

by SV

w

an optimized code
(unrolling, explicit vectorization,
few levels of blocking)

Ww—r‘- v

—

naive blocking

YT

o) 128

256

384
Dimension of Matrices

512

640

768

38/42

Best

performing
=
Q
N
N
—
[
o
e
=
O
|- -

Naive

implementation

Figure from R. Vuduc column block size (c)

Implementation

Based on

structure of

1120
1080

1030
980
930

1880
1830
1780
1730
1680
1630
1580

230
480
430
380
330
280

data

39/42

ZARTAN

L\

= Scientists and domain experts prefer to use high-
level languages such as Python or MATLAB

= However, to achieve sufficient performance,
computationally-intensive parts of applications must
eventually be rewritten in low-level languages

* |n addition, parallel platform details and input
parameters determine the best-performing parallel
implementation

40[42

mplementation Gap

P

L\

— - .
x
End User Application

Application

AN

|
I
8 : Application developers make design
- A 1 tradeoffs with a limited knowledge of the 0
‘A]‘)Pp himon : hardware platform =
eveloper ! -
@ i 2
L
«
1 I 3=
| ! 5
: 8 Expert parallel programmers have E
i Parallel limited knowledge of application
: Programming design tradeofls
i Expert
1 v
HW Platform Platform

A

Hardware Architect

41/42

J-\ Outline

-

= SEJITS approach

= Gaussian Mixture Model & Applications

= Covariance Matrix Computation & Code Variants
= Specialization

" Results

= Conclusion & Future Work

42[42

Key ldea: Generate, compile, and execute
high performance parallel code at runtime
using code transformation, introspection,
variant selection and other features of
high-level languages.

Invisibly to the user.

43142

7AW

)N (SEJITS)

= Leverage patterns to bridge productivity and
efficiency
= PLL (productivity-level language, eg Python) for
applications
= “Specializers” generate ELL (efficiency-level
language) code targeted to hardware
* Code generation can happen at runtime
= Specializers can incorporate autotuning
* Think: pattern-specific embedded DSLs

= ELL performance with PLL effort

S 4l] 42

") | Selective Embedded JIT Specialization =~

JN T (SENTS)

Productivity app

ASP —ASEJITS
Py f for Python
7l .C
| cc/ld
J—
—
cache

Interpreter

45/42

_

JJoN Applications of Gaussian Mixture Models

-

» Applications
» Can be used to cluster/classify any sequence of observations

» Speech Recognition —speaker classification, acoustic
modeling for speech recognition

» ComputerVision —image segmentation, hand writing
recognition 2
» Biology —flow cytometry | SR

Picoeucary_otqs_ié}.‘.' E

10°

» Data mining — topic classification

. £ 43 , .
in web documents g " -:

o PR s AR |

» Many more... . By T
p Prochlorococcus’

10° 10! 10° 10° 104

Side Scatter

46/42

/N N\

\ —

= Application example — Agglomerative Hierarchical
Clustering for Speaker Diarization

» Uses GMMs to represent distribution of audio features
for speakers in a recorded meeting

= |teratively trains GMMs using different number of
components each time and measuring which number of
components best fits the data

= Number of components in the best GMM corresponds
to number of speakers in the meeting

47142

BEN

= ASP framework encapsulates code variant selection
mechanisms and handcrafted templates to:

= Allow domain expert to stay in the high-level
language domain and focus on the application

= Obtain high performance from expert-tuned code
= Example in Gaussian Mixture Model Applications

= Performance benefit of specialization outweighs the
overhead of Python and the JIT process

= Expand to:
= more platforms, applications, patterns

= other code variant selection mechanisms
4842

GTX480—-Varying D

6 GTX 480: M =5, N =90000

|
v

0002 8 ¢

1
10 15 20 25 30 35 40

05 GTX 480: M = 100, N = 90000

0.4 ||

0.3}

0.2

0.1F

0.0

Ev4dO»r

R
L4

1 1 1 1 1 1
10 15 20 25 30 35 40

GTX285 vs. 480

0.06

0.05

0.04

0.03

0.02

0.01

(}Dﬂl. g.

GTX 480: M =5, N = 90000

10 15 20 25 30 35

0.06

0.05 1

0.04

0.03

0.02

0.01

e &
&Dﬂﬂ 5

GT}(285 M—5 N—BODDD

lvllh

10 15 2D 25 30 35
D

= ASP framework
= Cand CUDA compiling with CodePy (using PyCuda)
= PyUBLAS to eliminate copies between C and Python
= Version selection based on previous timings

= Evaluation platforms:
= GTX480 (Fermi)
" 14 SM, 32 SIMD, 48K shared mem, 3GB DRAM

= GTX 285
» 30 SM, 8 SIMD, 16K shared mem, 1GB DRAM

= CUDASDK 3.2
= NVCC3.2

51/42

Code Variants

for each component m in M comps
for each cell ¢ in DxD/2 cells —>\Work group
c 7
fgr each event n in N events —>Work item ¢ |y 8 |co
add nth contribution to c of m —> Se
V1 q
for each cell c in DxD/2 cells —> Work group

f h event nin N events .
preache - Work item

for pach component m in M comps
VﬁCd nth contribution to ¢ of m > Seq

52/42

