
1/42

PRODUCTIVE GMM TRAINING
WITH SEJITS FOR SPEAKER

DIARIZATION

Katya Gonina, Henry Cook, Shoiab Kamil,
Gerald Friedland, Armando Fox, David Patterson

ParLab Retreat, June 2, 2011

2/42

The Meeting Diarist

3/42

Components of the Meeting Diarist

4/42

Speaker Diarization

Estimate “who spoke when” with no prior knowledge of

speakers, #of speakers, words, or language spoken.

Audio track:

Clustering:

Segmentation:

5/42

Speaker Diarization: Core Algorithm
BERKELEY PAR LAB

 Start with too many clusters (initialized randomly)

 Purify clusters by comparing and merging similar clusters

 Resegment and repeat until no more merging needed

6/42

Parallelization of Diarization

 Five versions (so far):

Initial code (2006): 0.333 x realtime (i.e., 1h audio =
3h processing)

Serially optimized (2008): 1.5 x realtime

Parlab retreat summer 2010: Multicore+GPU
parallelization: 14.3 x realtime

Parlab retreat winter 2011: GPU-only parallelization
250 x realtime (i.e., 1h audio = 14.4sec processing)

 -> Offline = online!

Parlab retreat summer 2011: SEJITized! [1]

 [1] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. CUDA-level Performance with Python-
level Productivity for Gaussian Mixture Model Applications. USENIX HotPar Workshop, 2011.

7/42

Speaker Diarization in Python

Yes

8/42

Speaker Diarization in Python

Yes

g.train(x)

g.train(x)

g.train(x)

new_gmm_list(M,D)

9/42

Gaussian Mixture Models & Training

10/42

Clustering with Gaussian Mixture Models

 GMM - probabilistic model for
clustering (audio) data

 Assumes the distribution of
observations follows a set
(mixture) of multidimensional
Gaussian distributions

 Each Gaussian in the mixture has a
mean () and a covariance ()
parameters

 Gaussians in the mixture are
weighted with weight

m

s

p

Example GMM in two dimensions

(Source: Dan Klein, UCB)

11/42

GMM Training using EM Algorithm

 Given a set of observations/events – find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (, ,) and classify observations

 Expectation Maximization (EM) Algorithm

 E step
 Compute probabilities of events given model parameters

 M step
 Compute model parameters given probabilities

 weights, mean, covariance matrix

 Iterate until convergence

 Covariance matrix – most computationally intensive step

m

s

p

12/42

Covariance Matrix Computation

 N – number of feature vectors, ~10K-100K

 D – feature vector dimension (19 for speaker diarization), ~10-100

 M – number of Gaussian components, ~1-128

 Matrix is symmetric – only compute the lower DxD/2 cells

M

-

my

y

m

-
*

13/42

Covariance Matrix Computation

 Opportunities for parallelism (independent computations):

 Each component’s covariance matrix (M)

 Each cell in a covariance matrix (DxD/2)

 Each event’s contribution to a cell in a covar matrix (N)

 -> Multiple code variants to perform the same computation

 in different ways

M

14/42

Core

 Two levels of parallelism:

 Work-groups – parallelized
across cores (CUDA threadBlock)

 Work-groups’ work-items –
executed on a single core,
utilizing within-core parallelism
(CUDA thread)

 Per-core local memory
Core

Core

Core

C
ac

h
e

C

ac
h

e

C
ac

h
e

Core

Core

Core

C
ach

e

C
ach

e

C
ach

e

Manycore Parallel Platform

15/42

Code Variants

16/42

Code Variants - Example

 Code variant 1:

 2D grid of work groups M x D x D/2

 Each work group is responsible for computing one cell
in the covariance matrix for one component

 Work item parallelization over events (N)

Work

item

Work

Group

c1

c2 c3

..

..

c7

c8 c9

..

..

[2]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of
Technology, 2010.

17/42

Covariance Matrix Computation –
Code Variants

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N events

 add nth contribution to c of m

Work group

Work item

Seq.
V1

18/42

Covariance Matrix Computation –
Code Variants Summary

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N events

 add nth contribution to c of m

 for each cell c in DxD/2 cells

 for each event n in N events

 for each component m in M comps

 add nth contribution to c of m

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N events

 add nth contribution to c of m

 for each block b in B event blocks

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N/B events

 add nth contribution to c of m

 for each component m in M comps

 for each block b in B event blocks

 sum partial contributions to m from b

Work group

Work item

Work group

Work item

Seq

Work group

Work item

Seq

Seq

Work item

Seq

Seq

V2 V1

V3

V4

Work group

19/42

Results – Code Variant Performance

GTX480

D = 19

20/42

Results – Code Variant Performance

GTX285

D = 19

21/42

Results - Code Variant Selection

 Using best-performing code variant gave 32%
average improvement in matrix computation time
compared to always using original hand-coded
variant (D: 1 to 36, M: 1 to 128, N: 10K to 150K)

 Performance gap increases with larger problem sizes
(75.6% for D=36, M=128, N=500,000)

22/42

Specialization

23/42

Specialization with ASP

 Given:

 Problem Dimensions (N, D, M)

 Platform Parameters (targeting Nvidia GPUs)
 Core count, shared memory size, SIMD width…

 Automatically select:

 Optimal code variant

 Optimal parameters (block size, number of blocks) for
that parallelization strategy

24/42

SEJITS Framework: Overview

Python on Host

X = Read in data

gmm = GMM()

gmm.train(X)

Template
files

CUDA
sources

C on Host
Train(){
 for(){
 launch
 launch
 launch
 }
}

CUDA on GPU

C sources .so’s

kernel

kernel

kernel

kernel

kernel

25/42

SEJITS Framework

 Python code that handles application

 Manipulates problem data, determines learning targets

 C/CUDA code that runs quickly

 Allocates GPU memory

 Performs main EM iterative loop

 Specializer (ASP)

 Selects appropriate code variant
(from history)

 Pulls in the template for the code
variant, parameterizes it and
compiles to binary

26/42

Separation of Concerns

Application

Specializer

ASP core

CodePy

PyCUDA

g.train()

and input

data C/CUDA

Train

code

variants ASP

Module

Utilities

Compiled

module

g.train()

call

Speech Diarizer

author

(PLL)

Specializer

author

(ELL)

SEJITS

team

3rd party

library

Python

Code

Variant

Selection

27/42

Speaker Diarization in Python

Python C

…..

g.train(x)

new_gmm_list(M,D)

28/42

Speaker Diarization in Python

Python C

…..

15x LOC

reduction

29/42

Results – Specializer Overhead

 Python AHC code is within 1.25x of pure C/CUDA
implementation performance

 C/CUDA AHC (from winter retreat) – 250x realtime

 SEJITized AHC ~ 200x realtime

 Time lost in:

 Outer loop and GMM creation in Python

 Data copying overhead from CPU to GPU

 GMM scoring in Python

30/42

Cilk Backend

 We have implemented the Cilk backend for GMM
training

 ASP selects version based on available hardware

 Current implementation ~100x realtime

 5-10% C code reused

 All specializer infrastructure reused

http://supertech.csail.mit.edu/cilk/

31/42

Results – Portability & Maintenance

 Specializes to two types of platforms (multi-core
CPU, Nvidia GPU) to support portability

 Exact same application code

 Reuse of infrastructure:

 Specializer creation and code variant selection
mechanism reused

 Maintaining the code for next generation of
hardware

 Task of specializer writer, transparent to the application
developer

32/42

Conclusion & Future Work

 SEJITized GMM training in Speaker Diarization
component of Meeting Diarist

 Specialized covariance matrix computation with
code variant selection to two platforms

 Currently a factor of 1.25x slower than pure C/CUDA
implementation (200 x faster than realtime)

 Future work:

 Further specialize train kernel

 SEJITize other components

 Improve code variant selection mechanism

33/42

Thank you!

Questions?

34/42

Backup Slides

35/42

Results – Specializer Overhead in AHC

 Initial invocation – 81% overhead dude to complier
invocations

 Future runs using automatically determined optimal
code variant achieve 17% performance improvement
over the original GPU implementation (V1)

36/42

ATLAS FFTW,
Spiral,
OSKI

ASP/GM
M

ASP/Sten
cil

Delite/
OptiML

Copperhe
ad

Autuning of
code

Based on
runtime
information

Based on
higher-
order func

Using
reusable
framework

Embedded
in HLL

ASP vs Auto-tuning Libraries

37/42

The shift to parallel processing

 Parallel processing is here

Intel Processor Clock Speed

“ This shift toward increasing parallelism
is not a triumphant stride forward based
on breakthroughs in novel software and
architectures for parallelism; instead,
this plunge into parallelism is actually a
retreat from even greater challenges
that thwart efficient silicon
implementation of traditional
uniprocessor architectures.
 - The Berkeley View

“

38/42

Writing Fast Code is Hard

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 128 256 384 512 640 768

F
ra

ct
io

n
 o

f A
ri

th
m

et
ic

 P
ea

k

Dimension of Matrices

naïve blocking

(unrolling, explicit vectorization,
few levels of blocking)

ACML (vendor-provided binary)

an optimized code

Dense Matrix Multiply (V. Volkov)

39/42

Finding Best Implementation is Hard

Naïve

implementation

Implementation

Based on

structure of

data
Best

performing

Figure from R. Vuduc

40/42

Productivity vs Performance

 Scientists and domain experts prefer to use high-
level languages such as Python or MATLAB

 However, to achieve sufficient performance,
computationally-intensive parts of applications must
eventually be rewritten in low-level languages

 In addition, parallel platform details and input
parameters determine the best-performing parallel
implementation

41/42

Implementation Gap

HW Platform

Target
Application

42/42

Outline

 SEJITS approach

 Gaussian Mixture Model & Applications

 Covariance Matrix Computation & Code Variants

 Specialization

 Results

 Conclusion & Future Work

43/42

Selective Embedded Just-In-Time
Specialization (SEJITS)

Key Idea: Generate, compile, and execute

high performance parallel code at runtime

using code transformation, introspection,

variant selection and other features of

high-level languages.

Invisibly to the user.

44/42

Selective Embedded JIT Specialization
(SEJITS)

 Leverage patterns to bridge productivity and
efficiency

 PLL (productivity-level language, eg Python) for
applications

 “Specializers” generate ELL (efficiency-level
language) code targeted to hardware

 Code generation can happen at runtime

 Specializers can incorporate autotuning

 Think: pattern-specific embedded DSLs

 ELL performance with PLL effort

44

45/42

.py

OS/HW

f() @h()

Specializer

.c

In
te

rp
re

te
r

@g()

SEJITS

Productivity app

HW Info

.so

cc/ld

cache

Selective Embedded JIT Specialization
(SEJITS)

ASP – A SEJITS
for Python

46/42

Applications of Gaussian Mixture Models

 Applications

 Can be used to cluster/classify any sequence of observations

 Speech Recognition – speaker classification, acoustic
modeling for speech recognition

 Computer Vision – image segmentation, hand writing
recognition

 Biology – flow cytometry

 Data mining – topic classification

 in web documents

 Many more…

47/42

Results – Specializer Overhead

 Application example – Agglomerative Hierarchical
Clustering for Speaker Diarization

 Uses GMMs to represent distribution of audio features
for speakers in a recorded meeting

 Iteratively trains GMMs using different number of
components each time and measuring which number of
components best fits the data

 Number of components in the best GMM corresponds
to number of speakers in the meeting

48/42

Conclusions & Future Work

 ASP framework encapsulates code variant selection
mechanisms and handcrafted templates to:

 Allow domain expert to stay in the high-level
language domain and focus on the application

 Obtain high performance from expert-tuned code

 Example in Gaussian Mixture Model Applications

 Performance benefit of specialization outweighs the
overhead of Python and the JIT process

 Expand to:

 more platforms, applications, patterns

 other code variant selection mechanisms

49/42

Results – Version Comparison (Raw CUDA)

GTX480 – Varying D

50/42

Results – Version Comparison (Raw CUDA)

GTX285 vs. 480

51/42

SEJITS Framework: Current Implementation

 ASP framework
 C and CUDA compiling with CodePy (using PyCuda)

 PyUBLAS to eliminate copies between C and Python

 Version selection based on previous timings

 Evaluation platforms:
 GTX480 (Fermi)

 14 SM, 32 SIMD, 48K shared mem, 3GB DRAM

 GTX 285
 30 SM, 8 SIMD, 16K shared mem, 1GB DRAM

 CUDA SDK 3.2

 NVCC 3.2

52/42

Covariance Matrix Computation –
Code Variants

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each event n in N events

 add nth contribution to c of m

Work group

Work item

Seq
V1

 for each cell c in DxD/2 cells

 for each event n in N events

 for each component m in M comps

 add nth contribution to c of m

Work group

Work item

Seq
V2

…..

