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)) \  Components of the Meeting Diarist

-

"who said what"

ho spoke when" higher-level analysis

Audio
Signal

"what was said"

levant W "what are the
Scraping main points"

"what's relevant
to this"
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Audio track:

Segmentation:

Clustering:

l

Speaker A

Speaker B

Speaker B

Estimate “who spoke when” with no prior knowledge of
speakers, #of speakers, words, or language spoken.
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‘ Initialization '

‘ (Re-)Training ' Yes
lerge two
' Clusters?

1

I (Re-)Alignment \
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= Five versions (so far):

< Initial code (2006): 0.333 x realtime (i.e., 1h audio =
3h processing)

*Seria

< Parla
paral

% Parla

ly optimized (2008): 1.5 x realtime

O retreat summer 2010: Multicore+GPU
elization: 14.3 x realtime

0 retreat winter 2011: GPU-only parallelization

250 X realtime (i.e., 1h audio = 14.4sec processing)

\/
0’0 - >

Offline = online!

< Parlab retreat summer 2011: SEJITized! [1]

[1] H. Cook, E. Goning, S. Kamil, G. Friedland, D. Patterson, A. Fox. CUDA-level Performance with Python-
level Productivity for Gaussian Mixture Model Applications. USENIX HotPar Workshop, 2011. 6/42



er Diarization in Python

def AHC(self):

# Get the events, divide them into an initial k clusters and train each GMM on a cluster
per_cluster = self.N/self.init_num_clusters
init_training = zip(self.gmm_list,np.vsplit(self.X, range(per_cluster, self.N, per_cluster)))
for g, x in init_training:

g.train(x)

Initialization

# Pertorm hierarchical agglomeration based on BIC scores
b = 1.
while (best_BIC_score » @ and len(self.gmm_list) » 1):

num_clusters = len(self.gmm_list)

# Resegment data based on likelihood scoring

likelihoods = self.gmm_list[@].score(self.X)

for g in self.gmm_list[1:]:

likelihoods = np.column_stack(({likelihoods, g.score (self.X)))
i — i i Cavic—1

(Re-)Training

# Across 2.5 secs of observations, vote on which cluster they should be associated with
split_events = split_events_based_on_wotes(most_likely, self.XD

for g, data in split_ewvents:
g.trainCdata)

# Score all pairs of GMMs using BIC
best_merged_gmm = None
best_BIC_score = ©.9@

merged_tuple = None

( for gmmlidx in range(len(iter_bic_list)): \
for gmm2idx in range(gmmlidx+1, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
g2, d2 = iter_bic_list[gmm2idx]
score = 0.9 &
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate((dl, d2)))
if score » best_BIC_score:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)

\ best_BIC_score = score J

ul ! i AAtds mnd e

if best_BIC_score > 0.0: l
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
i d_amm?
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def AHC(self):

# Ge "s and train each GMM on a cluster

?:L'; n eW_g m m_l I St( M[ D) wge(per_cluster, self.N, per_cluster)))
for -
g.train(x)

# Pertorm hierarchical agglomeration based on BlL scores

b = 1.

while (best_BIC_score » @ and len(self.gmm_list) » 1):
num_clusters = len(self.gmm_list)
# Resegment data based on likelihood scoring

likelihoods = self.gmm_list[@].score(self.X)
for g in self.gmm_list[1:]:
likelihoods = np.column_stack(({likelihoods, g.score (self.X)))

Cawic—10

# Across 2.5 secs of observations, vote on which cluster they should be associated with
split_ _on_votes(most_likely, self.X)

for g, g .traln(X)

(Re-)Training

# Score all pairs of GMMs using BIC
best_merged_gmm = None

best_BIC score = 0.0

merged_tuple = None

( for gmmlidx in range(len(iter_bic_list)): \
for gmm2idx in range(gmmlidx+1, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
g2, d2 = iter_bic_lis+Famm2idv]
score = 0.9 .
new_gmm, score = com g _tra N (X) 3. concatenate((dl, dZ)))
if score > best_BIC_:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)

\ best_BIC_score = score J

Gdats made

A

P —

if best_BIC_score > 0.0:

self.gmm_list.remove(merged_tuple[@])

self.gmm_list.remove(merged_tuple[1])
i d_amm?
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Gaussian Mixture Models & Training
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» GMM - probabilistic model for
clustering (audio) data
3

Assumes the distribution of
observations follows a set
(mixture) of multidimensional
Gaussian distributions

Each Gaussian in the mixture has a
mean (/) and a covariance (s)
parameters

Gaussians in the mixture are
weighted with weight O
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(Source: Dan Klein, UCB)
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= Given a set of observations/events — find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (1, s, p ) and classify observations
= Expectation Maximization (EM) Algorithm
= Estep
= Compute probabilities of events given model parameters

= Mstep

= Compute model parameters given probabilities
= weights, mean, covariance matrix

" [terate until convergence

= Covariance matrix — most computationally intensive step
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N — number of feature vectors, ~10K-100K

D —feature vector dimension (19 for speaker diarization), ~10-100

M — number of Gaussian components, ~1-128

Matrix is symmetric — only compute the lower DxD/2 cells

N

(Yn — Bk) (Yn — k) P g (K |y, 6P)




= Opportunities for parallelihgm (independent computations):
= Each component’s covariance matrix (M)
= Each cell in a covariance matrix (DxD/2)
= Each event’s contribution to a cell in a covar matrix (N)
= -> Multiple code variants to perform the same computation
in different ways
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= Two levels of parallelism:

= Work-groups — parallelized
across cores (CUDA threadBlock)

= Work-groups’ work-items —
executed on a single core,
utilizing within-core parallelism
(CUDA thread)

= Per-core local memory
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Code Variants
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= Code variant 1:

= 2D grid of work groups M x D x D/2

» Each work group is responsible for computing one cell
in the covariance matrix for one component

= Work item parallelization over events (N)

C3

Work
item
Work
Group D "

[2]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of

Technology, 2010.




Code Variants

for each component m in M comps
for each cell ¢ in DxD/2 cells —>\Work group
¢ c7
fdr each event nin N events —>Work item L2 =1 £8llcq
Vladc nth contribution to ¢ of m —>Seq. o fe el fe L S

for each cell ¢ in DxD/2 cells —> Work group

for each event n in N events

-> Work item

for each component m in M comps
add nth contribution to ¢ of m |5 Seq

V2
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for each component m in M comps

for each cell c in DxD/2 cells

—> Work group

for each cell ¢ in DxD/2 cells =>\Work group|
for each event nin N events = Work item
fgr each event n in N events - Work item
forreach component m in M comps
Vladc nth contribution to ¢ of m -> Seq \/2afid nth contribution to ¢ of m - Seq
for each component m in M comps =>Work group| for each block b in B event blocks ™
for each component m in M comps Work group
for each cell ¢ in DxD/2 cells =>\Work item _
fo each cell ¢ in DxD/2 cells —>Work item
for each event nin N events —> Seq
add nth contribution to ¢ of m Vf r egach event n in N/B events —> Seq
add| nth contribution to ¢ of m
for each component m in M comps —>
for each block b in B event blocks Seq
V3 sum partial contributions to m from b
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)) \g Results — Code Variant Performance

optimal code version names
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)) \g Results — Code Variant Performance

optimal code version names
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= Using best-performing code variant gave 32%
average improvement in matrix computation time
compared to always using original hand-coded
variant (D: 1to 36, M: 1t0 128, N: 10K to 150K)

= Performance gap increases with larger problem sizes
(75.6% for D=36, M=128, N=500,000)
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Specialization
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= Given:
= Problem Dimensions (N, D, M)

» Platform Parameters (targeting Nvidia GPUs)
= Core count, shared memory size, SIMD width...

= Automatically select:

= Optimal code variant

» Optimal parameters (block size, number of blocks) for
that parallelization strategy
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/ \ Template IICUDA / \

files ' ’sources

l kernel

X = Read in data C sources 0 kernel

|

gmm = GMM() -

train(X
gmm.train(X) aunch

launch

launch

}
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MIN
SEJITS Framework

= Python code that handles application

= Manipulates problem data, determines learning targets
= (C/CUDA code that runs quickly

= Allocates GPU memory

= Performs main EM iterative loop

= Specializer (ASP)
= Selects appropriate code variant Template
(from history) l

» Pullsinthe template forthecode | =i 0 couces
variant, parameterizes it and
compiles to binary

gmm = GMM()

gmm.train(X) launch

launch
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Speech Diarizer  Specializer

author author SEJITS 3'd party
(PLL) (ELL) team library
Application Specializer ASP core CodePy

PyCUDA

Utilities

g.train() |€
call
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Python

def AHC(self):

# Get th pch GMM on a cluster
per_clus

i) new_gmm_list(M, D) u&
g. traTexy

# Perform hierarchical agglomeration based on BIC scores
best_BIC_score = 1.8
while (best_BIC_score > @ and len(self.gmm_list) > 1):

num_clusters = len(self.gmm_list)

# Resegment data based on likelihood scoring
likelihoods = self.gmm_list[@].score(self.X)

for g in self.gmm_list[1:]:
likelihoods = np.column_stack((likelihoods, g.score (self.X)J))
most_likely = likelihoods.argmex(axis=1)

# Across 2.5 secs of observations, vote on whig d be associated with
spli rvotes(most_likely, self.X)

| g.train(x)

# Score all pairs of GMMs using BIC
best_merged_gmm = None
best_BIC_score = 0.8

merged_tuple = None

for gmmlidx in range(len(iter_bic_list)):
for gmm2idx in range(gmmlidx+l, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
gz, d2 = iter_bic_list[gmm2idx]
score = 0.0
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate((dl, d2)))
if score > best_BIC score:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)
best_BIC_score = score

# Merge the winning candidate pair

if best_BIC_score > 0.@:
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
self.gmm_list.append(best_merged_gmm)
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\  Speaker Diarization in Python

Python C

def AHC(self):

# Get the events, divide them into an initial k clusters and train each GMM on a cluster

per_cluster = self.N/self.init_num_clusters

init_training = zip(self.gmm_list,np.vsplit(self.X, range(per_cluster, self.N, per_cluster)))

for g, x in init_training:
g.train(x)

# Perform hierarchical agglomeration based on BIC scores
best_BIC_score = 1.8
while (best_BIC_score > @ and len(self.gmm_list) > 1):

num_clusters = len(self.gmm_list)

# Resegment data based on likelihood scoring
likelihoods = self.gmm_list[@].score(self.X)
for g in self.gmm_list[1:]:

likelihoods = np.column_stack((likelihoods, g.sco
most_likely = likelihoods.argmex(axis=1)

# Across 2.5 secs of observations, vote on whic
split_events = split_events_based_on_votes(most_like

for g, data in split_events:
g.train(data)

# Score all pairs of GMMs using BIC
best_merged_gmm = MNone
best_BI(_score = 8.9

merged_tuple = None

for gmmlidx in range(len(iter_bic_list)):
for gmm2idx in range(gmmlidx+l, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
g2, d2 = iter_bic_list[gmm2idx]
score = 0.0
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate((dl, d2)))
if score > best_BIC_score: T
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)
best_BIC_score = score

# Merge the winning candidate pair

if best_BIC_score > 0.@:
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
self.gmm_list.append(best_merged_gmm)
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= Python AHC code is within 1.25x of pure C/CUDA
implementation performance

* C/CUDA AHC (from winter retreat) — 250x realtime
= SEJITized AHC ~ 200x realtime
= Time lostin:

* Quterloop and GMM creation in Python
» Data copying overhead from CPU to GPU
* GMM scoring in Python
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= We have implemented the Cilk backend for GMM
training

= ASP selects version based on available hardware
= Current implementation ~100x realtime

" 5-10% C code reused

= All specializer infrastructure reused

ARk
J J ;

$ 8 daamp ¥y
%

http://supertech.csail.mit.edu/cilk/
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= Specializes to two types of platforms (multi-core
CPU, Nvidia GPU) to support portability

= Exact same application code

= Reuse of infrastructure:

= Specializer creation and code variant selection
mechanism reused

= Maintaining the code for next generation of
hardware

= Task of specializer writer, transparent to the application
developer
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ZARTAN

L\

= SEJITized GMM training in Speaker Diarization
component of Meeting Diarist

= Specialized covariance matrix computation with
code variant selection to two platforms

= Currently a factor of 1.25x slower than pure C/CUDA
implementation (200 x faster than realtime)

= Future work:
* Further specialize train kernel
= SEJITize other components
= Improve code variant selection mechanism
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Thank you!

Questions?
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Backup Slides
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= |nitial invocation —81% overhead dude to complier
Invocations

= Future runs using automatically determined optimal
code variant achieve 17% performance improvement
over the original GPU implementation (V1)

Runtime (seconds)
0 2 4 6 8 10 12 14 16 18 20
| | | | | |

crscunav:
SOTS VL (uncachec) MMM IS

SEJITS V1 (cached)

SEJITS V4-B32 (cached) F o

B CUDA Python B NVCC
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"L AsPusAuto-tuning Libraries

ATLAS ASP/GM | ASP/Sten | Delite/ Copperhe
M cil [
Autuning of
code y

Based on
runtime
information

Based on
higher-
order func
Using
reusable
framework

Embedded
in HLL




= Parallel processing is here

This shift toward increasing parallelism
is not a triumphant stride forward based
on breakthroughs in novel software and
architectures for parallelism; instead,
this plunge into parallelism is actually a
retreat from even greater challenges
that thwart efficient silicon
implementation of traditional
uniprocessor architectures.

- The Berkeley View

®Corei7

% BCore2
X Pentium 4
X XPentium I1I
g Pentium II
X KPentium

=80486
80386
©80286
8088
8086
8080
8008
4004

¢ %

Intel Processor Clock Speed
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Fraction of Arithmetic Peak
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ZARTAN

L\

= Scientists and domain experts prefer to use high-
level languages such as Python or MATLAB

= However, to achieve sufficient performance,
computationally-intensive parts of applications must
eventually be rewritten in low-level languages

* |n addition, parallel platform details and input
parameters determine the best-performing parallel
implementation

40[42



mplementation Gap

P

L\

— - .
x
End User Application

Application

AN

|
I
8 : Application developers make design
- A 1 tradeoffs with a limited knowledge of the 0
‘A]‘)Pp himon : hardware platform =
eveloper ! -
@ i 2
L
«
1 I 3=
| ! 5
: 8 Expert parallel programmers have E
i Parallel limited knowledge of application
: Programming design tradeofls
i Expert
1 v
HW Platform Platform

A

Hardware Architect

41/42



J-\  Outline

-

= SEJITS approach

= Gaussian Mixture Model & Applications

= Covariance Matrix Computation & Code Variants
= Specialization

" Results

= Conclusion & Future Work
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Key ldea: Generate, compile, and execute
high performance parallel code at runtime
using code transformation, introspection,
variant selection and other features of
high-level languages.

Invisibly to the user.

43142



7AW

)N (SEJITS)

= Leverage patterns to bridge productivity and
efficiency
= PLL (productivity-level language, eg Python) for
applications
= “Specializers” generate ELL (efficiency-level
language) code targeted to hardware
* Code generation can happen at runtime
= Specializers can incorporate autotuning
* Think: pattern-specific embedded DSLs

= ELL performance with PLL effort

S 4l] 42



") | Selective Embedded JIT Specialization =~

JN T (SENTS)

Productivity app

ASP —ASEJITS
Py f for Python
7l .C
| cc/ld
J—
—
cache

Interpreter
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_

JJoN Applications of Gaussian Mixture Models

-

» Applications
» Can be used to cluster/classify any sequence of observations

» Speech Recognition —speaker classification, acoustic
modeling for speech recognition

» ComputerVision —image segmentation, hand writing
recognition 2
» Biology —flow cytometry | SR

Picoeucary_otqs_ié}.‘.' E

10°

» Data mining — topic classification

. £ 43 , .
in web documents g " -:

o PR s AR |

» Many more... . By T
p Prochlorococcus’

10° 10! 10° 10° 104

Side Scatter
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= Application example — Agglomerative Hierarchical
Clustering for Speaker Diarization

» Uses GMMs to represent distribution of audio features
for speakers in a recorded meeting

= |teratively trains GMMs using different number of
components each time and measuring which number of
components best fits the data

= Number of components in the best GMM corresponds
to number of speakers in the meeting

47142




BEN

= ASP framework encapsulates code variant selection
mechanisms and handcrafted templates to:

= Allow domain expert to stay in the high-level
language domain and focus on the application

= Obtain high performance from expert-tuned code
= Example in Gaussian Mixture Model Applications

= Performance benefit of specialization outweighs the
overhead of Python and the JIT process

= Expand to:
= more platforms, applications, patterns

= other code variant selection mechanisms
4842



GTX480—-Varying D
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GTX285 vs. 480
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= ASP framework
= Cand CUDA compiling with CodePy (using PyCuda)
= PyUBLAS to eliminate copies between C and Python
= Version selection based on previous timings

= Evaluation platforms:
= GTX480 (Fermi)
" 14 SM, 32 SIMD, 48K shared mem, 3GB DRAM

= GTX 285
» 30 SM, 8 SIMD, 16K shared mem, 1GB DRAM

= CUDASDK 3.2
= NVCC3.2
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Code Variants

for each component m in M comps
for each cell ¢ in DxD/2 cells —>\Work group
c 7
fgr each event n in N events —>Work item ¢ |y 8 |co
add nth contribution to c of m —> Se
V1 q
for each cell c in DxD/2 cells —> Work group

f h event nin N events .
preache - Work item

for pach component m in M comps
VﬁCd nth contribution to ¢ of m > Seq
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