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The Meeting Diarist 
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Components of the Meeting Diarist 
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Speaker Diarization 

Estimate “who spoke when” with no prior knowledge of 

speakers, #of speakers, words, or language spoken. 

Audio track: 

Clustering: 

Segmentation: 
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Speaker Diarization: Core Algorithm 
BERKELEY PAR LAB 

 Start with too many clusters (initialized randomly) 

 Purify clusters by comparing and merging similar clusters 

 Resegment and repeat until no more merging needed 
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Parallelization of Diarization 

 Five versions (so far): 

Initial code (2006): 0.333 x realtime (i.e., 1h audio = 
3h processing) 

Serially optimized (2008): 1.5 x realtime 

Parlab retreat summer 2010: Multicore+GPU 
parallelization: 14.3 x realtime 

Parlab retreat winter 2011: GPU-only parallelization 
250 x realtime (i.e., 1h audio = 14.4sec processing) 

 -> Offline = online! 

Parlab retreat summer 2011: SEJITized! [1] 

 [1] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. CUDA-level Performance with  Python-
level Productivity for Gaussian Mixture Model Applications. USENIX HotPar Workshop, 2011.  
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Speaker Diarization in Python 

Yes 
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Speaker Diarization in Python 

Yes 

g.train(x) 

g.train(x) 

g.train(x) 

new_gmm_list(M,D) 
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Gaussian Mixture Models & Training 
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Clustering with Gaussian Mixture Models 

 GMM - probabilistic model for 
clustering (audio) data  

 Assumes the distribution of 
observations follows a set 
(mixture) of multidimensional 
Gaussian distributions 

 Each Gaussian in the mixture has a 
mean (   ) and a covariance (   ) 
parameters 

 Gaussians in the mixture are 
weighted with weight  
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Example GMM in two dimensions 

(Source: Dan Klein, UCB) 
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GMM Training using EM Algorithm 

 Given a set of observations/events – find the maximum 
likelihood estimates of the set of Gaussian Mixture 
parameters (   ,    ,      ) and classify observations 

 Expectation Maximization (EM) Algorithm 

 E step 
 Compute probabilities of events given model parameters 

 M step 
 Compute model parameters given probabilities 

 weights, mean, covariance matrix  

 Iterate until convergence 

 Covariance matrix – most computationally intensive step 
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Covariance Matrix Computation 

 N – number of feature vectors, ~10K-100K 

 D – feature vector dimension (19 for speaker diarization), ~10-100 

 M – number of Gaussian components, ~1-128 

 Matrix is symmetric – only compute the lower DxD/2 cells 
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Covariance Matrix Computation 

 Opportunities for parallelism (independent computations): 

 Each component’s covariance matrix (M) 

 Each cell in a covariance matrix (DxD/2) 

 Each event’s contribution to a cell in a covar matrix (N) 

 -> Multiple code variants to perform the same computation 

      in different ways 

 

M 
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Core 

 Two levels of parallelism: 

 Work-groups – parallelized 
across cores (CUDA threadBlock) 

 Work-groups’ work-items – 
executed on a single core, 
utilizing within-core parallelism 
(CUDA thread) 

 Per-core local memory 
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Manycore Parallel Platform 
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Code Variants 
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Code Variants - Example 

 Code variant 1: 

 2D grid of work groups M x D x D/2 

 Each work group is responsible for computing one cell 
in the covariance matrix for one component 

 Work item parallelization over events (N) 

Work 

item 

Work 

Group 

c1 

c2 c3 

.. .. .. 

.. .. .. .. 

c7 

c8 c9 

.. .. .. 

.. .. .. .. 

[2]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of 
Technology, 2010.  
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Covariance Matrix Computation –  
Code Variants 

 

  for each component m in M comps 

    for each cell c in DxD/2 cells 

       

      for each event n in N events 

       

        add nth contribution to c of m 

Work group 

Work item 

Seq. 
V1 
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Covariance Matrix Computation –  
Code Variants Summary 

 

  for each component m in M comps 

    for each cell c in DxD/2 cells 

       

      for each event n in N events 

       

        add nth contribution to c of m 

  

  for each cell c in DxD/2 cells  

     

    for each event n in N events 

       

      for each component m in M comps 

        add nth contribution to c of m 

 

  for each component m in M comps 

     

    for each cell c in DxD/2 cells 

       

      for each event n in N events 

        add nth contribution to c of m 

 

   

  for each block b in B event blocks 

    for each component m in M comps 

   

      for each cell c in DxD/2 cells 

       

        for each event n in N/B events 

          add nth contribution to c of m 

 

  for each component m in M comps 

    for each block b in B event blocks 

      sum partial contributions to m from b 

Work group 

Work item 

Work group  

Work item 

Seq 

Work group 

Work item 

Seq 

Seq 

Work item 

Seq 

Seq  

V2 V1 

V3 

V4 

Work group  
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Results – Code Variant Performance 

GTX480 

D = 19 
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Results – Code Variant Performance 

GTX285 

D = 19 
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Results - Code Variant Selection 

 Using best-performing code variant gave 32% 
average improvement in matrix computation time 
compared to always using original hand-coded 
variant (D: 1 to 36, M: 1 to 128, N: 10K to 150K) 

 Performance gap increases with larger problem sizes 
(75.6% for D=36, M=128, N=500,000) 
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Specialization 
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Specialization with ASP 

 Given: 

 Problem Dimensions (N, D, M) 

 Platform Parameters (targeting Nvidia GPUs) 
 Core count, shared memory size, SIMD width… 

 Automatically select: 

 Optimal code variant 

 Optimal parameters (block size, number of blocks) for 
that parallelization strategy 
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SEJITS Framework: Overview 

Python on Host 
 
 
 
 

X = Read in data 
 
 

gmm = GMM() 
 
 

gmm.train(X) 

Template 
files 

CUDA 
sources 

C on Host 
Train(){ 
 for(){
 launch 
 launch 
 launch 
 } 
} 

CUDA on GPU 

C sources .so’s 

kernel 

kernel 

kernel 

kernel 

kernel 
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SEJITS Framework 

 Python code that handles application 

 Manipulates problem data, determines learning targets 

 C/CUDA code that runs quickly 

 Allocates GPU memory 

 Performs main EM iterative loop 

 Specializer (ASP) 

 Selects appropriate code variant  
(from history) 

 Pulls in the template for the code 
variant, parameterizes it and 
compiles to binary 
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Separation of Concerns 

Application 

 

 

 

 

Specializer 

 

 

 

ASP core 

 

 

 

CodePy 

PyCUDA 

 

 

 

g.train() 

and input 

data C/CUDA 

Train 

code 

variants ASP 

Module 

Utilities 

Compiled 

module 

g.train() 

call 

Speech Diarizer 

author 

(PLL) 

Specializer 

author 

(ELL) 

SEJITS 

team 

3rd party 

library 

Python 

Code 

Variant 

Selection 
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Speaker Diarization in Python 

Python C 

….. 

g.train(x) 

new_gmm_list(M,D) 
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Speaker Diarization in Python 

Python C 

….. 

15x LOC 

reduction 
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Results – Specializer Overhead 

 Python AHC code is within 1.25x of pure C/CUDA 
implementation performance  

 C/CUDA AHC (from winter retreat) – 250x realtime 

 SEJITized AHC ~ 200x realtime 

 Time lost in: 

 Outer loop and GMM creation in Python  

 Data copying overhead from CPU to GPU 

 GMM scoring in Python 
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Cilk Backend  

 We have implemented the Cilk backend for GMM 
training  

 ASP selects version based on available hardware 

 Current implementation ~100x realtime 

 5-10% C code reused 

 All specializer infrastructure reused 

 

http://supertech.csail.mit.edu/cilk/ 
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Results – Portability & Maintenance 

 Specializes to two types of platforms (multi-core 
CPU, Nvidia GPU) to support portability 

 Exact same application code 

 Reuse of infrastructure: 

 Specializer creation and code variant selection 
mechanism reused  

 Maintaining the code for next generation of 
hardware 

 Task of specializer writer, transparent to the application 
developer 
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Conclusion & Future Work 

 SEJITized GMM training in Speaker Diarization 
component of Meeting Diarist 

 Specialized covariance matrix computation with 
code variant selection to two platforms 

 Currently a factor of 1.25x slower than pure C/CUDA 
implementation (200 x faster than realtime)  

 Future work: 

 Further specialize train kernel 

 SEJITize other components 

 Improve code variant selection mechanism 
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Thank you! 
 
 
Questions? 
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Backup Slides 
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Results – Specializer Overhead in AHC 

 Initial invocation – 81% overhead dude to complier 
invocations 

 Future runs using automatically determined optimal 
code variant achieve 17% performance improvement 
over the original GPU implementation (V1) 
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ATLAS FFTW, 
Spiral, 
OSKI 

ASP/GM
M 

ASP/Sten
cil 

Delite/ 
OptiML 

Copperhe
ad 

Autuning of 
code 

Based on 
runtime 
information 

Based on 
higher-
order func 

Using 
reusable 
framework 

Embedded 
in HLL 

ASP vs Auto-tuning Libraries 
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The shift to parallel processing 

 Parallel processing is here 
 
 

  

Intel Processor Clock Speed 

“    This shift toward increasing parallelism 
is not a triumphant stride forward based 
on breakthroughs in novel software and 
architectures for parallelism; instead, 
this plunge into parallelism is actually a 
retreat from even greater challenges 
that thwart efficient silicon 
implementation of traditional 
uniprocessor architectures. 
  - The Berkeley View 
 

“ 
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Writing Fast Code is Hard 
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ACML (vendor-provided binary) 

an optimized code 

Dense Matrix Multiply (V. Volkov) 
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Finding Best Implementation is Hard 

Naïve 

implementation 

Implementation 

Based on 

structure of 

data 
Best 

performing 

Figure from R. Vuduc 
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Productivity vs Performance 

 Scientists and domain experts prefer to use high-
level languages such as Python or MATLAB 

 

 However, to achieve sufficient performance, 
computationally-intensive parts of applications must 
eventually be rewritten in low-level languages 

 

 In addition, parallel platform details and input 
parameters determine the best-performing parallel 
implementation 
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Implementation Gap 

HW Platform 

Target  
Application 
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Outline 

 SEJITS approach 

 Gaussian Mixture Model & Applications 

 Covariance Matrix Computation & Code Variants 

 Specialization 

 Results 

 Conclusion & Future Work 
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Selective Embedded Just-In-Time 
Specialization (SEJITS) 

Key Idea: Generate, compile, and execute 

high performance parallel code at runtime 

using code transformation, introspection, 

variant selection and other features of 

high-level languages. 

 

Invisibly to the user. 
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Selective Embedded JIT Specialization 
(SEJITS) 
 

 Leverage patterns to bridge productivity and 
efficiency 

 PLL (productivity-level language, eg Python) for 
applications  

  “Specializers” generate ELL (efficiency-level 
language) code targeted to hardware 

 Code generation can happen at runtime 

 Specializers can incorporate autotuning 

 Think: pattern-specific embedded DSLs  

  ELL performance with PLL effort 

44 
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.py 

OS/HW 

f() @h() 

Specializer 

.c 
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@g() 

SEJITS 

Productivity app 

HW Info 

.so 

cc/ld 

cache 

Selective Embedded JIT Specialization 
(SEJITS) 

ASP – A SEJITS 
for Python 
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Applications of Gaussian Mixture Models 

 Applications 

 Can be used to cluster/classify any sequence of observations 

 Speech Recognition – speaker classification, acoustic 
modeling for speech recognition 

 Computer Vision – image segmentation, hand writing 
recognition  

 Biology – flow cytometry  

 Data mining – topic classification  

     in web documents  

 Many more… 
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Results – Specializer Overhead 

 Application example – Agglomerative Hierarchical 
Clustering for Speaker Diarization 

 Uses GMMs to represent distribution of audio features 
for speakers in a recorded meeting 

 Iteratively trains GMMs using different number of 
components each time and measuring which number of 
components best fits the data 

 Number of components in the best GMM corresponds 
to number of speakers in the meeting 
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Conclusions & Future Work 

 ASP framework encapsulates code variant selection 
mechanisms and handcrafted templates to: 

 Allow domain expert to stay in the high-level 
language domain and focus on the application 

 Obtain high performance from expert-tuned code 

 Example in Gaussian Mixture Model Applications 

 Performance benefit of specialization outweighs the 
overhead of Python and the JIT process 

 Expand to: 

 more platforms, applications, patterns 

 other code variant selection mechanisms 
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Results – Version Comparison (Raw CUDA) 

GTX480 – Varying D 
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Results – Version Comparison (Raw CUDA) 

GTX285 vs. 480 
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SEJITS Framework: Current Implementation 

 ASP framework 
 C and CUDA compiling with CodePy (using PyCuda) 

 PyUBLAS to eliminate copies between C and Python 

 Version selection based on previous timings 

 

 Evaluation platforms:  
 GTX480 (Fermi) 

 14 SM, 32 SIMD, 48K shared mem, 3GB DRAM 

 GTX 285 
 30 SM, 8 SIMD, 16K shared mem, 1GB DRAM 

 CUDA SDK 3.2 

 NVCC 3.2 

 



52/42 

Covariance Matrix Computation –  
Code Variants 

 

  for each component m in M comps 

    for each cell c in DxD/2 cells 

       

      for each event n in N events 

       

        add nth contribution to c of m 

Work group 

Work item 

Seq 
V1 

 for each cell c in DxD/2 cells  

     

    for each event n in N events 

       

      for each component m in M comps 

        add nth contribution to c of m 

Work group  

Work item 

Seq 
V2 

….. 


