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Background

= Cache coherence is important
= Not just functionality, but performance and energy
= Major implications for programming models

= Cache coherence is difficult
= To implement and verify a single protocol
» To explore design space of multiple protocols

= Hardware design in general is not productive

= Often lacking modularity, extensibility,
composability



Motivating Hypotheses

= Hypothesis: We can write protocols using
succinct, declarative descriptions, and
generate effective hardware implementations

* Produce verified implementations from verified
specifications

» Experiment with more designs

= Hypothesis: Customization of protocol
behavior is important for energy efficiency
* On a per-motif or per-specializer basis
» Heterogeneity in memory hierarchy



Chisel

= Constructing Hardware In a Scala Embedded Language

= Embed a hardware-description language in Scala,
using Scala’s extension facilities

* A hardware module is just a data structure in Scala

» Different backends can generate different types of output
(C, Verilog) from same Chisel representation

= Full power of Scala for writing hardware generators
= Object-Oriented: Factory objects, traits, overloading etc
» Functional: Higher-order funcs, anonymous funcs, currying
= Compiles to JVM: Good performance, Java interoperability



Chisel Vision

= Apply the best of SW design practices
to HW design

= Write reusable modules
» Capture design patterns as generators
= Declarative design and search

= Write it the way you do on the whiteboard



Coherence on the Whiteboard
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Coherence on the Whiteboard
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Coherence on the Whiteboard
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Complexity Concerns

= We can verify this protocol’s rules, but are
there additional sources of complexity?

= Turning message sequences into transactions

= Making multi-step, intra-node behavior atomic



= Complexity at the inter-node message
seqguence level

» Interleave messages re: particular block
= Add transient/busy states to protocol

» Handle races

* Provide write serializability and atomicity
» Avoid deadlock, livelock, starvation

= Address externalities: type of network used,
amount of message buffering available
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= Are we still on the whiteboard?

Computer Sciences

= Complexity at the intra-node atomicity level
= Arbitrating for finite number of SRAM ports
» Dequeuing and buffering requests

» Enqueuing requests and responses
* Filling and draining MSHRs

= Multi-cycle ops with potentially conflicting
updates lead to additional transient states
= Any modification to deal with the above
(or area/timing constraints) could render
original verification work useless
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Current Focus

= Address intra-node complexity using
BlueChisel, a declarative, embedded
DSL built on top of Chisel

= Goal: Generate not only control logic for
protocol-defined activity but also:
= Arbitration logic for access to SRAM ports
» Skid buffers and queuing logic

» Logic implementing intermediate/transient
protocol states
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Inspiration: Bluespec

= High-level, functional HDL compiled to a

term rewriting system and translated into HW

= Natural way to describe many HW devices
= Understandable, well-defined semantics

= Conditional atomic execution of state updates, based on rules
- Guarded atomic actions

= Scheduler dynamically tries to fire as many as possible

= Limitations:

* |n general, guarded atomic actions are a productive
abstraction in some cases, but not in others

= Rules can only express actions that take single cycle
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BlueChisel

= Core functionality: conditional evaluation of rules
leads to atomic state updates

= For cache coherence, automatically generate:
= Extra transient/implicit protocol states
= Additional rules to govern multi-cycle operations
= Fairness and rule priority with urgency annotations

= Extension built on top of Chisel, which we
choose to apply where appropriate
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ez BlueCHISEL Inputs and Outputs

Computer Sciences
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Hardware Integration
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Design Flow
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= Try to address inter-node, message
sequence interleaving complexity

= Generate sufficient transient/busy states
= Compatible physical networks and buffering

= High-level composition of new transactions
with existing protocols

" “MESI” = “MI” + “E” + “S” + ?

= Patterns in message sequences
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Computer Sciences

o Future Work: Design Flow
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Future Work: Protocols

Protocol extensions that
» Exploit SW knowledge via explicit SW->HW directives
= Allow for heterogeneous memory hierarchy behavior

Assignment of data to particular state

» Clean this cache block
Assignment of data to particular sub-protocol

= Keep this block coherent using an update protocol
Exemption of data from any protocol other than

SW-directed actions
= Only move this block in response to a DMA command
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..o Future Work: Specialization

Computer Sciences

Programs have been found to employ a set of common
types of sharing behavior

= Write-once, Private, Write-many, Result, Synchronization, Migratory,
Producer/Consumer, Read-mostly, Streaming

Sharing behavior is often known by expert or even
application programmer

= Utilize high-level info instead of reconstructing in HW

SEJITS: emit optimized code from high level
abstractions

= Code that can control cache behavior according to pattern
» Even define user-level protocols

Bloom: Use consistency-analysis to inform decisions
about which sub-protocols to employ
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Conclusion

= We can write protocols using succinct,
declarative descriptions, and generate
effective hardware implementations

= Declarative extension to Chisel based on
ideas from Bluespec

* Produce verified implementations from
verified specifications

= Experiment with more designs

= Explore space of protocols that use SW
input to create heterogeneous behavior
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Related Work

Murphi
= DSL for finite-state analysis/model checking

Teapot
» DSL for user-space software coherence protocols

SLICC
» DSL for emitting SW modules for GEMS simulator

= Bluespec SystemVerilog
= HDL based on guarded atomic actions
= Bloom

= DSL for high-level consistency analysis of distributed
parallel algorithms
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Consistency

= For now, left up to enforcement at
processor by compiler-issued ISA
constructs (e.g. fences)

= |n the future, would like to consider
protocols that exploit very relaxed
consistency models (e.g. location
consistency)

= What patterns? What whiteboard design?
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BlueChisel

= |[nputs:
rule ( cond ) { update .. }

= Outputs:

» Rule engines, consisting of scheduler and
muxing logic, that conditional modify state

= CHISEL internals:

= During creation, log rule with component

= During elaboration, analyze domain and range
of rules to create scheduler and mux code
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Applying CHISEL to Intra-node

Complexity

= What are the abstractions?
» Data (states, messages, payloads)
» Actions (send messages, update states)
= Rules

= What are the reusable modules?

= Collections of rules encapsulated in rule
engines

= What are the design patterns?
= Control logic for queues, arbiters, MSHRs
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Flow of Information and Control
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...z Data object access patterns

Computer Sciences

= Write-once
= Initialized but then only read
= Best supported by replication (selected portions of large objects)
=  Private
= Need not be managed
=  On violation, demote/activate management?
= Write-many
=  Frequently modified by multiple threads between synch points
» Use delayed-update protocol
=  Result
» Restricted subset of write-many, no reads until all writes complete
» Lack of conflicts allows maximum utilization of delayed-update protocol
= Synchronization
= Distributed locks, atomic operands
= Migratory
= Read and written by single thread at a time, as object in critical sections of code
= Associate w/ lock movement, look for signature pattern
=  Producer/Consumer
=  Produced by one thread and consumed by fixed set of other threads
= Eager object movement in update protocol
=  Read-mostly
= Replicate and update infrequently via broadcast
= Streaming
= Read once (or few times), too large to keep in particular level for reuse
=  General read/write
= Default, rare



e Case Study 1: SVM Training

Computer Sciences

def train (val, data)
def val_compare(x):
return compare(x, val)
z = map(val_compare, data)

data




Case Study 2: Stencils

= Producer/consumer

= Update protocol with proactive transmission of ghost
cells to static neighbors
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Case Study 3: nbody

= Migratory
= Migrate on read miss rather than replicate
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Specialization: Update

orotocols

= Known at compile time (prod/con)
= Fixed per run (prod/con)
= Dynamic (migratory)
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Ml -> MESI
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