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Background 

§  Cache coherence is important!
§  Not just functionality, but performance and energy!
§  Major implications for programming models!

§  Cache coherence is difficult!
§  To implement and verify a single protocol!
§  To explore design space of multiple protocols!

§  Hardware design in general is not productive!
§  Often lacking modularity, extensibility, 

composability!
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Motivating Hypotheses 

§  Hypothesis: We can write protocols using 
succinct, declarative descriptions, and 
generate effective hardware implementations!
§  Produce verified implementations from verified 

specifications!
§  Experiment with more designs!

§  Hypothesis: Customization of protocol 
behavior is important for energy efficiency!
§  On a per-motif or per-specializer basis !
§  Heterogeneity in memory hierarchy !
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Chisel 

§  Constructing Hardware In a Scala Embedded Language!

§  Embed a hardware-description language in Scala, 
using Scalaʼs extension facilities!
§  A hardware module is just a data structure in Scala!
§  Different backends can generate different types of output 

(C, Verilog) from same Chisel representation!

§  Full power of Scala for writing hardware generators!
§  Object-Oriented: Factory objects, traits, overloading etc!
§  Functional: Higher-order funcs, anonymous funcs, currying!
§  Compiles to JVM: Good performance, Java interoperability!
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Chisel Vision 

§  Apply the best of SW design practices     
to HW design!
§ Write reusable modules!
§ Capture design patterns as generators!
§ Declarative design and search!

§  Write it the way you do on the whiteboard!

5 



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

Coherence on the Whiteboard 

§  Three views!
§  First view:  

coherence protocol 
as abstract state 
machine!

§ Node types!
§  States!
§  Invariants!
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Coherence on the Whiteboard  

§  Second view: 
coherence protocol 
as set of sequences 
of request/reply 
messages!

§  Set of all sequences!
§ Order of messages 

in each sequence!
§ Messages, payloads!
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Coherence on the Whiteboard  

§  Third view:  
coherence protocol 
as rule tables!

§ Given state and 
input, emit messages 
and update state!

§  Set of rules for each 
node type!
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Complexity Concerns 

§  We can verify this protocolʼs rules, but are 
there additional sources of complexity?!

§  Turning message sequences into transactions!

§  Making multi-step, intra-node behavior atomic!
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Are we still on the whiteboard? 

§  Complexity at the inter-node message 
sequence level!
§  Interleave messages re: particular block!
§  Add transient/busy states to protocol!
§ Handle races!
§  Provide write serializability and atomicity!
§  Avoid deadlock, livelock, starvation!
§  Address externalities: type of network used, 

amount of message buffering available!
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Are we still on the whiteboard? 

§  Complexity at the intra-node atomicity level!
§  Arbitrating for finite number of SRAM ports!
§  Dequeuing and buffering requests!
§  Enqueuing requests and responses !
§  Filling and draining MSHRs!
§ Multi-cycle ops with potentially conflicting  

updates lead to additional transient states!
§  Any modification to deal with the above     

(or area/timing constraints) could render   
original verification work useless!
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Current Focus 

§  Address intra-node complexity using    
BlueChisel, a declarative, embedded 
DSL built on top of Chisel!

§  Goal: Generate not only control logic for 
protocol-defined activity but also:!
§  Arbitration logic for access to SRAM ports!
§  Skid buffers and queuing logic!
§  Logic implementing intermediate/transient  

protocol states!
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Inspiration: Bluespec 

§  High-level, functional HDL compiled to a       
term rewriting system and translated into HW!
§  Natural way to describe many HW devices!
§  Understandable, well-defined semantics!
§  Conditional atomic execution of state updates, based on rules!

•  Guarded atomic actions!
§  Scheduler dynamically tries to fire as many as possible!

§  Limitations: !
§  In general, guarded atomic actions are a productive 

abstraction in some cases, but not in others!
§  Rules can only express actions that take single cycle!
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BlueChisel 

§  Core functionality: conditional evaluation of rules 
leads to atomic state updates!

!
§  For cache coherence, automatically generate:!

§  Extra transient/implicit protocol states!
§  Additional rules to govern multi-cycle operations!
§  Fairness and rule priority with urgency annotations!

§  Extension built on top of Chisel, which we 
choose to apply where appropriate!
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BlueCHISEL Inputs and Outputs 

Inputs:    rule ( cond ) { updates … }!
Ouputs:!
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Hardware Integration 

Cache controller 
protocol rule engine 

Directory controller 
protocol rule engine Dir   
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Design Flow 
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Future Work: Extending Chisel 

§  Try to address inter-node, message 
sequence interleaving complexity!
§ Generate sufficient transient/busy states!
§ Compatible physical networks and buffering!

§  High-level composition of new transactions 
with existing protocols!
§  “MESI”  =  “MI” + “E” + “S” + ?!

§  Patterns in message sequences!
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Future Work: Design Flow 
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Future Work: Protocols 

§  Protocol extensions that !
§  Exploit SW knowledge via explicit SW->HW directives!
§  Allow for heterogeneous memory hierarchy behavior!

§  Assignment of data to particular state!
§  Clean this cache block!

§  Assignment of data to particular sub-protocol!
§  Keep this block coherent using an update protocol!

§  Exemption of data from any protocol other than 
SW-directed actions!
§  Only move this block in response to a DMA command!
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Future Work: Specialization 

§  Programs have been found to employ a set of common 
types of sharing behavior!
§  Write-once, Private, Write-many, Result, Synchronization, Migratory, 

Producer/Consumer, Read-mostly, Streaming!

§  Sharing behavior is often known by expert or even 
application programmer!
§  Utilize high-level info instead of reconstructing in HW!

§  SEJITS: emit optimized code from high level 
abstractions!
§  Code that can control cache behavior according to pattern!
§  Even define user-level protocols!

§  Bloom: Use consistency-analysis to inform decisions 
about which sub-protocols to employ!
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Conclusion 

§  We can write protocols using succinct, 
declarative descriptions, and generate 
effective hardware implementations!
§ Declarative extension to Chisel based on 

ideas from Bluespec!
§  Produce verified implementations from 

verified specifications!
§  Experiment with more designs!

§  Explore space of protocols that use SW 
input to create heterogeneous behavior!
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Thanks 
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Related Work 

§  Murphi!
§  DSL for finite-state analysis/model checking!

§  Teapot!
§  DSL for user-space software coherence protocols!

§  SLICC!
§  DSL for emitting SW modules for GEMS simulator!

§  Bluespec SystemVerilog!
§  HDL based on guarded atomic actions!

§  Bloom!
§  DSL for high-level consistency analysis of distributed 

parallel algorithms!
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Consistency 

§  For now, left up to enforcement at 
processor by compiler-issued ISA 
constructs (e.g. fences)!

§  In the future, would like to consider 
protocols that exploit very relaxed 
consistency models (e.g. location 
consistency)!

§  What patterns? What whiteboard design?!
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BlueChisel 

§  Inputs:!
!rule ( cond ) { update … }!

§  Outputs:!
§ Rule engines, consisting of scheduler and 

muxing logic, that conditional modify state!
§  CHISEL internals:!

§ During creation, log rule with component!
§ During elaboration, analyze domain and range 

of rules to create scheduler and mux code!
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Applying CHISEL to Intra-node 
Complexity 

§  What are the abstractions?!
§ Data (states, messages, payloads)!
§  Actions (send messages, update states)!
§ Rules!

§  What are the reusable modules?!
§ Collections of rules encapsulated in rule 

engines!
§  What are the design patterns?!

§ Control logic for queues, arbiters, MSHRs!
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Data object access patterns 

§  Write-once!
§  Initialized but then only read!
§  Best supported by replication (selected portions of large objects)!

§  Private!
§  Need not be managed!
§  On violation, demote/activate management?!

§  Write-many!
§  Frequently modified by multiple threads between synch points!
§  Use delayed-update protocol!

§  Result!
§  Restricted subset of write-many, no reads until all writes complete!
§  Lack of conflicts allows maximum utilization of delayed-update protocol!

§  Synchronization!
§  Distributed locks, atomic operands!

§  Migratory!
§  Read and written by single thread at a time, as object in critical sections of code!
§  Associate w/ lock movement, look for signature pattern!

§  Producer/Consumer!
§  Produced by one thread and consumed by fixed set of other threads!
§  Eager object movement in update protocol!

§  Read-mostly!
§  Replicate and update infrequently via broadcast!

§  Streaming!
§  Read once (or few times), too large to keep in particular level for reuse!

§  General read/write!
§  Default, rare!
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Case Study 1: SVM Training 

def train (val, data) 
    def val_compare(x): 
        return compare(x, val) 
    z = map(val_compare, data) 

data 
val 
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Case Study 2: Stencils 

§  Producer/consumer!
§  Update protocol with proactive transmission of ghost 

cells to static neighbors!
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Case Study 3: nbody 

§  Migratory!
§  Migrate on read miss rather than replicate!
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Specialization: Update 
protocols 

§  Known at compile time (prod/con)!
§  Fixed per run (prod/con)!
§  Dynamic (migratory)!
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MI -> MESI 
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