
EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

P A R A L L E L C O M P U T I N G L A B O R A T O R Y

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Productive Design of
Extensible Cache

Coherence Protocols!
!

Henry Cook, Jonathan Bachrach, !
Krste Asanovic!

Par Lab Summer Retreat, Santa Cruz
June 1, 2011

! 1

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Background

§  Cache coherence is important!
§  Not just functionality, but performance and energy!
§  Major implications for programming models!

§  Cache coherence is difficult!
§  To implement and verify a single protocol!
§  To explore design space of multiple protocols!

§  Hardware design in general is not productive!
§  Often lacking modularity, extensibility,

composability!

2

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Motivating Hypotheses

§  Hypothesis: We can write protocols using
succinct, declarative descriptions, and
generate effective hardware implementations!
§  Produce verified implementations from verified

specifications!
§  Experiment with more designs!

§  Hypothesis: Customization of protocol
behavior is important for energy efficiency!
§  On a per-motif or per-specializer basis !
§  Heterogeneity in memory hierarchy !

3

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Chisel

§  Constructing Hardware In a Scala Embedded Language!

§  Embed a hardware-description language in Scala,
using Scalaʼs extension facilities!
§  A hardware module is just a data structure in Scala!
§  Different backends can generate different types of output

(C, Verilog) from same Chisel representation!

§  Full power of Scala for writing hardware generators!
§  Object-Oriented: Factory objects, traits, overloading etc!
§  Functional: Higher-order funcs, anonymous funcs, currying!
§  Compiles to JVM: Good performance, Java interoperability!

4

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Chisel Vision

§  Apply the best of SW design practices
to HW design!
§ Write reusable modules!
§ Capture design patterns as generators!
§ Declarative design and search!

§  Write it the way you do on the whiteboard!

5

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Coherence on the Whiteboard

§  Three views!
§  First view:

coherence protocol
as abstract state
machine!

§ Node types!
§  States!
§  Invariants!

6

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Coherence on the Whiteboard

§  Second view:
coherence protocol
as set of sequences
of request/reply
messages!

§  Set of all sequences!
§ Order of messages

in each sequence!
§ Messages, payloads!

7

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Coherence on the Whiteboard

§  Third view:
coherence protocol
as rule tables!

§ Given state and
input, emit messages
and update state!

§  Set of rules for each
node type!

8

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Complexity Concerns

§  We can verify this protocolʼs rules, but are
there additional sources of complexity?!

§  Turning message sequences into transactions!

§  Making multi-step, intra-node behavior atomic!

9

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Are we still on the whiteboard?

§  Complexity at the inter-node message
sequence level!
§  Interleave messages re: particular block!
§  Add transient/busy states to protocol!
§ Handle races!
§  Provide write serializability and atomicity!
§  Avoid deadlock, livelock, starvation!
§  Address externalities: type of network used,

amount of message buffering available!

10

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Are we still on the whiteboard?

§  Complexity at the intra-node atomicity level!
§  Arbitrating for finite number of SRAM ports!
§  Dequeuing and buffering requests!
§  Enqueuing requests and responses !
§  Filling and draining MSHRs!
§ Multi-cycle ops with potentially conflicting

updates lead to additional transient states!
§  Any modification to deal with the above

(or area/timing constraints) could render
original verification work useless!

11

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Current Focus

§  Address intra-node complexity using
BlueChisel, a declarative, embedded
DSL built on top of Chisel!

§  Goal: Generate not only control logic for
protocol-defined activity but also:!
§  Arbitration logic for access to SRAM ports!
§  Skid buffers and queuing logic!
§  Logic implementing intermediate/transient

protocol states!
12

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Inspiration: Bluespec

§  High-level, functional HDL compiled to a
term rewriting system and translated into HW!
§  Natural way to describe many HW devices!
§  Understandable, well-defined semantics!
§  Conditional atomic execution of state updates, based on rules!

•  Guarded atomic actions!
§  Scheduler dynamically tries to fire as many as possible!

§  Limitations: !
§  In general, guarded atomic actions are a productive

abstraction in some cases, but not in others!
§  Rules can only express actions that take single cycle!

13

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

BlueChisel

§  Core functionality: conditional evaluation of rules
leads to atomic state updates!

!
§  For cache coherence, automatically generate:!

§  Extra transient/implicit protocol states!
§  Additional rules to govern multi-cycle operations!
§  Fairness and rule priority with urgency annotations!

§  Extension built on top of Chisel, which we
choose to apply where appropriate!

14

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

BlueCHISEL Inputs and Outputs

Inputs: rule (cond) { updates … }!
Ouputs:!

15

CAN
FIRE

WILL
FIRE Rules Old

States
New

States

Scheduler

Muxing

Condition
Action

Condition
Action

Condition
Action

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Hardware Integration

Cache controller
protocol rule engine

Directory controller
protocol rule engine Dir

16

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Design Flow

17

Abstract State Machines Independent Message Sequences

Race-Free Coherence Transactions

Per-Node Rule Tables

Integrated Memory Hierarchy

Chisel!

CAN
FIRE

WILL
FIRE Rules Old

States
New

States

Scheduler

Muxing

Conditio
n

Action

Conditio
n

Action

Conditio
n

Action

Per-Node Rule Engine

To formal
verifier!

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Future Work: Extending Chisel

§  Try to address inter-node, message
sequence interleaving complexity!
§ Generate sufficient transient/busy states!
§ Compatible physical networks and buffering!

§  High-level composition of new transactions
with existing protocols!
§  “MESI” = “MI” + “E” + “S” + ?!

§  Patterns in message sequences!

18

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Future Work: Design Flow

19

Abstract State Machines Independent Message Sequences

Race-Free Coherence Transactions

Per-Node Rule Tables

Integrated Memory Hierarchy

Chisel	

CAN
FIRE

WILL
FIRE Rules Old

States
New

States

Scheduler

Muxing

Conditio
n

Action

Conditio
n

Action

Conditio
n

Action

Per-Node Rule Engine

??
?	

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Future Work: Protocols

§  Protocol extensions that !
§  Exploit SW knowledge via explicit SW->HW directives!
§  Allow for heterogeneous memory hierarchy behavior!

§  Assignment of data to particular state!
§  Clean this cache block!

§  Assignment of data to particular sub-protocol!
§  Keep this block coherent using an update protocol!

§  Exemption of data from any protocol other than
SW-directed actions!
§  Only move this block in response to a DMA command!

20

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Future Work: Specialization

§  Programs have been found to employ a set of common
types of sharing behavior!
§  Write-once, Private, Write-many, Result, Synchronization, Migratory,

Producer/Consumer, Read-mostly, Streaming!

§  Sharing behavior is often known by expert or even
application programmer!
§  Utilize high-level info instead of reconstructing in HW!

§  SEJITS: emit optimized code from high level
abstractions!
§  Code that can control cache behavior according to pattern!
§  Even define user-level protocols!

§  Bloom: Use consistency-analysis to inform decisions
about which sub-protocols to employ!

21

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Conclusion

§  We can write protocols using succinct,
declarative descriptions, and generate
effective hardware implementations!
§ Declarative extension to Chisel based on

ideas from Bluespec!
§  Produce verified implementations from

verified specifications!
§  Experiment with more designs!

§  Explore space of protocols that use SW
input to create heterogeneous behavior!

22

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Thanks

23

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Related Work

§  Murphi!
§  DSL for finite-state analysis/model checking!

§  Teapot!
§  DSL for user-space software coherence protocols!

§  SLICC!
§  DSL for emitting SW modules for GEMS simulator!

§  Bluespec SystemVerilog!
§  HDL based on guarded atomic actions!

§  Bloom!
§  DSL for high-level consistency analysis of distributed

parallel algorithms!

24

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Consistency

§  For now, left up to enforcement at
processor by compiler-issued ISA
constructs (e.g. fences)!

§  In the future, would like to consider
protocols that exploit very relaxed
consistency models (e.g. location
consistency)!

§  What patterns? What whiteboard design?!
25

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

BlueChisel

§  Inputs:!
!rule (cond) { update … }!

§  Outputs:!
§ Rule engines, consisting of scheduler and

muxing logic, that conditional modify state!
§  CHISEL internals:!

§ During creation, log rule with component!
§ During elaboration, analyze domain and range

of rules to create scheduler and mux code!
26

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Applying CHISEL to Intra-node
Complexity

§  What are the abstractions?!
§ Data (states, messages, payloads)!
§  Actions (send messages, update states)!
§ Rules!

§  What are the reusable modules?!
§ Collections of rules encapsulated in rule

engines!
§  What are the design patterns?!

§ Control logic for queues, arbiters, MSHRs!

27

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Flow of Information and Control

Applications
Pattern Compositions

PLL Knowledge

Specializations

ELL/Runtime Implementation

SW-Management Mechanisms

Manycore HW Features

Knowledge

Allocation
Placement

Eviction
Prefetch

Synchronization
Bulk Transfers

Predictability

Isolation
Reconfigurability

Opt-in

Efficiency

Functional
Correctness

28

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Data object access patterns

§  Write-once!
§  Initialized but then only read!
§  Best supported by replication (selected portions of large objects)!

§  Private!
§  Need not be managed!
§  On violation, demote/activate management?!

§  Write-many!
§  Frequently modified by multiple threads between synch points!
§  Use delayed-update protocol!

§  Result!
§  Restricted subset of write-many, no reads until all writes complete!
§  Lack of conflicts allows maximum utilization of delayed-update protocol!

§  Synchronization!
§  Distributed locks, atomic operands!

§  Migratory!
§  Read and written by single thread at a time, as object in critical sections of code!
§  Associate w/ lock movement, look for signature pattern!

§  Producer/Consumer!
§  Produced by one thread and consumed by fixed set of other threads!
§  Eager object movement in update protocol!

§  Read-mostly!
§  Replicate and update infrequently via broadcast!

§  Streaming!
§  Read once (or few times), too large to keep in particular level for reuse!

§  General read/write!
§  Default, rare!

29

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Case Study 1: SVM Training

def train (val, data)
 def val_compare(x):
 return compare(x, val)
 z = map(val_compare, data)

data
val

30

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Case Study 2: Stencils

§  Producer/consumer!
§  Update protocol with proactive transmission of ghost

cells to static neighbors!

31

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Case Study 3: nbody

§  Migratory!
§  Migrate on read miss rather than replicate!

32

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Specialization: Update
protocols

§  Known at compile time (prod/con)!
§  Fixed per run (prod/con)!
§  Dynamic (migratory)!

33

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

MI -> MESI

MI

MSI

MEI

MESI 34

