Productive Design of
Extensible Cache
Coherence Protocols

Henry Cook, Jonathan Bachrach,

Krste Asanovic
Par Lab Summer Retreat, Santa Cruz
June 1, 2011

Background

= Cache coherence is important
= Not just functionality, but performance and energy
= Major implications for programming models

= Cache coherence is difficult
= To implement and verify a single protocol
» To explore design space of multiple protocols

= Hardware design in general is not productive

= Often lacking modularity, extensibility,
composability

Motivating Hypotheses

= Hypothesis: We can write protocols using
succinct, declarative descriptions, and
generate effective hardware implementations

* Produce verified implementations from verified
specifications

» Experiment with more designs

= Hypothesis: Customization of protocol
behavior is important for energy efficiency
* On a per-motif or per-specializer basis
» Heterogeneity in memory hierarchy

Chisel

= Constructing Hardware In a Scala Embedded Language

= Embed a hardware-description language in Scala,
using Scala’s extension facilities

* A hardware module is just a data structure in Scala

» Different backends can generate different types of output
(C, Verilog) from same Chisel representation

= Full power of Scala for writing hardware generators
= Object-Oriented: Factory objects, traits, overloading etc
» Functional: Higher-order funcs, anonymous funcs, currying
= Compiles to JVM: Good performance, Java interoperability

Chisel Vision

= Apply the best of SW design practices
to HW design

= Write reusable modules
» Capture design patterns as generators
= Declarative design and search

= Write it the way you do on the whiteboard

Coherence on the Whiteboard

= Three views load (obtain readabl
oad (obtain reada ecopy)’
= FIFS’[Vi eW /o‘;invalidate msg (acknowledge)
' % % %
coherence protocol By &
as abstract state AONTRC
’

machine

* Node types
= States
= |nvariants

Coherence on the Whiteboard

= Second view: @
coherence protocol

as set of sequences

1: RAEx/Upgrade request 2b: Invalidation request 1. Write back

of request/reply
messages @
u Set Of a” SequenCeS 1. Read/ROEwUpgrade request 1: Requesty 2b: Interventiony

» Order of messages
In eaCh Sequence 2. NACK 2¢: Speculative repty: 3b: Wr 1e4>ack

* Messages, payloads

Coherence on the Whiteboard

P2C request” deferQ CState Action Next CState
- - . State
[] I r VI eW Load(a) ac deferQ | - req — deferQ’ -
™ a if deferQ | Cell(a,v,Sh) refire” Cell(a,v,Sh)
a i deferQ | Cell(a,v Ex) | refire” Cell(a,v EX)
a ¢ deferQ | Cell(a,- Pen) | req — deferQ’ Cell(a,- Pen)
a ¢ deferQ | a ¢ cache if cmissQ.isNotFull then
CO e re n Ce p rO O CO (ShReq, a, L} — Mem, | Cell(a,- Pen)
req —» cmissQ
else
req — deferQ * a i cache
Store{a) a ¢ deferQ req — deferQ!
aS r u e a e S a i deferQ | Cell(a.- Sh) (Inv,a,H) — Mem, a i cache
Keep req
a ¢ deferQ | Cell(a,- Ex) retire? Cell(a,v EX)
a ¢ deferQ | Cell(a,- Pen) | req — deferQ’ Cell(a,- Pen)
a i deferQ | a ¢ cache if cmissQ.isNotFull then
(ExReq, a,L) —» Mem, | Cell(a,-,Pen)
req — cmissQ
. else)
- req — deferQ ° a ¢ cache
G Ive n State a n d voluntary rule | - Cell(a,- Sh) (Inv, a2, H) — Mem" a cache
- Cell(2v,Ex) | (WBL a,v,H) — Mem® | a ¢ cache
Cell(a,v,Ex) | (WB,a,v,H) — Mem® Cell(a,v,Sh)

ull for this aperation. otherwise, req will e p2cQ

se is sent veessor and pul request is delesed

' $2eAQ s must ok be Tl for th

input, emit messages =
a n d u p d ate St at e Figure 3: Rules for Handling P2C Requests at Cache-site

C2M Message | Priority | MSuate | MDIR Action Next MState = Next MDIR
ShReg(c.2) Low - ¢! (ShResp, a, Mem[a] } — ¢ S {c}

u Set Of ru IeS fo r e aC h S c@ MDIR | d;:é:;;\rjtr:ﬁ[ul) w:: 'S " MDIR + {c}

deq c2m Message

E {}.¢' #¢ | (WBReg,a) ¢ T {}
n Od e t e ExReq(c.a) Low - or (ExResp, a, Mem[a]) — ¢, E {c}
deqg c2m Message
S ¢ @ MDIR [Ve’ € MDIR. {InvReq,a) —+¢’, T MDIR
E {¢}.c" #c¢ | (WBIReg,a) — ¢ T {7}
Inv(e,a) High mastate | ¢ € MDIR | deq c2m Message mstate MDIR - {¢}
WBI(c.a,v) High T|E {c} Mem[a]:=v, S 0
deq c2m Message
WB(c.a,v) High T|E {c} Mem([a]:=v, S {e}

deq c2m Message

any state with MDIR = @ is treated a5 S with @

Figure 4: Rules for Handling Cache Messages at Memory-site

Complexity Concerns

= We can verify this protocol’s rules, but are
there additional sources of complexity?

= Turning message sequences into transactions

= Making multi-step, intra-node behavior atomic

= Complexity at the inter-node message
seqguence level

» Interleave messages re: particular block
= Add transient/busy states to protocol

» Handle races

* Provide write serializability and atomicity
» Avoid deadlock, livelock, starvation

= Address externalities: type of network used,
amount of message buffering available

10

= Are we still on the whiteboard?

Computer Sciences

= Complexity at the intra-node atomicity level
= Arbitrating for finite number of SRAM ports
» Dequeuing and buffering requests

» Enqueuing requests and responses
* Filling and draining MSHRs

= Multi-cycle ops with potentially conflicting
updates lead to additional transient states
= Any modification to deal with the above
(or area/timing constraints) could render
original verification work useless

11

Current Focus

= Address intra-node complexity using
BlueChisel, a declarative, embedded
DSL built on top of Chisel

= Goal: Generate not only control logic for
protocol-defined activity but also:
= Arbitration logic for access to SRAM ports
» Skid buffers and queuing logic

» Logic implementing intermediate/transient
protocol states

12

Inspiration: Bluespec

= High-level, functional HDL compiled to a

term rewriting system and translated into HW

= Natural way to describe many HW devices
= Understandable, well-defined semantics

= Conditional atomic execution of state updates, based on rules
- Guarded atomic actions

= Scheduler dynamically tries to fire as many as possible

= Limitations:

* |n general, guarded atomic actions are a productive
abstraction in some cases, but not in others

= Rules can only express actions that take single cycle

13

BlueChisel

= Core functionality: conditional evaluation of rules
leads to atomic state updates

= For cache coherence, automatically generate:
= Extra transient/implicit protocol states
= Additional rules to govern multi-cycle operations
= Fairness and rule priority with urgency annotations

= Extension built on top of Chisel, which we
choose to apply where appropriate

14

ez BlueCHISEL Inputs and Outputs

Computer Sciences

Inputs:
Ouputs:

Old
States

Rules

rule (cond

CAN
FIRE

Condition

Action

Condition

Action

Condition

L

Action

{ updates

Scheduler

Muxing

WILL

FIRE New
States

Hardware Integration

1c2mQ_{L,H}

Cache controller

= i —T —————— |protoc:ol rule engine

Interconnect

Directory controller
protocol rule engine

|
|
|
|
|
1

S :

c2mQ_{L,H}

———

m2cQ

Dir

i

>

rule engine |

Addrsi,i+n] |

16

Design Flow

Abstract State Machines
%@ @mn wes gt readbl

G w((reade lushes co wy

%&, & ﬁ %C%

Independent Message Sequences

1. ReodRdt eqest 2 intenenton

2 uwwmx

To formal
verifier

Race-Free Coherence Transactions

1. ResdRdx request ResdRc st 20 ntenenton

O D

2 nAcK 26 Speciaive ey 30 VDR

PN

/ Per-Node Rule Engine \

CAN

Y4

WILL

Scheduler

Conditio

I
I
I
I
I
c2mQ_{LH}
(-

Conditio

Conditio

Action

= Try to address inter-node, message
sequence interleaving complexity

= Generate sufficient transient/busy states
= Compatible physical networks and buffering

= High-level composition of new transactions
with existing protocols

" “MESI” = “MI” + “E” + “S” + ?

= Patterns in message sequences

18

Computer Sciences

o Future Work: Design Flow

Abstract State Machines Independent Message Sequences

[T ResdRdEc et 2 itenenton
aaaaa adable copy)

P A g M =

5,9 & \% .
% NG, : et
& AING, G . . .

Race-Free Coherence Transactions

36 Wit back

PN

/ Per-Node Rule Engine \

CAN

WILL
Scheduler

Conditio

Conditio

Conditio

Action

Future Work: Protocols

Protocol extensions that
» Exploit SW knowledge via explicit SW->HW directives
= Allow for heterogeneous memory hierarchy behavior

Assignment of data to particular state

» Clean this cache block
Assignment of data to particular sub-protocol

= Keep this block coherent using an update protocol
Exemption of data from any protocol other than

SW-directed actions
= Only move this block in response to a DMA command

20

..o Future Work: Specialization

Computer Sciences

Programs have been found to employ a set of common
types of sharing behavior

= Write-once, Private, Write-many, Result, Synchronization, Migratory,
Producer/Consumer, Read-mostly, Streaming

Sharing behavior is often known by expert or even
application programmer

= Utilize high-level info instead of reconstructing in HW

SEJITS: emit optimized code from high level
abstractions

= Code that can control cache behavior according to pattern
» Even define user-level protocols

Bloom: Use consistency-analysis to inform decisions
about which sub-protocols to employ

21

Conclusion

= We can write protocols using succinct,
declarative descriptions, and generate
effective hardware implementations

= Declarative extension to Chisel based on
ideas from Bluespec

* Produce verified implementations from
verified specifications

= Experiment with more designs

= Explore space of protocols that use SW
input to create heterogeneous behavior

22

23

Related Work

Murphi
= DSL for finite-state analysis/model checking

Teapot
» DSL for user-space software coherence protocols

SLICC
» DSL for emitting SW modules for GEMS simulator

= Bluespec SystemVerilog
= HDL based on guarded atomic actions
= Bloom

= DSL for high-level consistency analysis of distributed
parallel algorithms

24

Consistency

= For now, left up to enforcement at
processor by compiler-issued ISA
constructs (e.g. fences)

= |n the future, would like to consider
protocols that exploit very relaxed
consistency models (e.g. location
consistency)

= What patterns? What whiteboard design?

25

BlueChisel

= |[nputs:
rule (cond) { update .. }

= Outputs:

» Rule engines, consisting of scheduler and
muxing logic, that conditional modify state

= CHISEL internals:

= During creation, log rule with component

= During elaboration, analyze domain and range
of rules to create scheduler and mux code

26

Applying CHISEL to Intra-node

Complexity

= What are the abstractions?
» Data (states, messages, payloads)
» Actions (send messages, update states)
= Rules

= What are the reusable modules?

= Collections of rules encapsulated in rule
engines

= What are the design patterns?
= Control logic for queues, arbiters, MSHRs

27

Flow of Information and Control

SW-Management Mechanisms

Manycore HW Features

Knowledge

Predictability

Allocation Isolation
Placement —— Reconfigurability

Eviction :
Prefetch Opt-in

Synchronization Efficiency

Bulk Transfers
Functional

Correctness

BERKELEY PAR LAB

...z Data object access patterns

Computer Sciences

= Write-once
= Initialized but then only read
= Best supported by replication (selected portions of large objects)
= Private
= Need not be managed
= On violation, demote/activate management?
= Write-many
= Frequently modified by multiple threads between synch points
» Use delayed-update protocol
= Result
» Restricted subset of write-many, no reads until all writes complete
» Lack of conflicts allows maximum utilization of delayed-update protocol
= Synchronization
= Distributed locks, atomic operands
= Migratory
= Read and written by single thread at a time, as object in critical sections of code
= Associate w/ lock movement, look for signature pattern
= Producer/Consumer
= Produced by one thread and consumed by fixed set of other threads
= Eager object movement in update protocol
= Read-mostly
= Replicate and update infrequently via broadcast
= Streaming
= Read once (or few times), too large to keep in particular level for reuse
= General read/write
= Default, rare

e Case Study 1: SVM Training

Computer Sciences

def train (val, data)
def val_compare(x):
return compare(x, val)
z = map(val_compare, data)

data

Case Study 2: Stencils

= Producer/consumer

= Update protocol with proactive transmission of ghost
cells to static neighbors

31

Case Study 3: nbody

= Migratory
= Migrate on read miss rather than replicate

32

Specialization: Update

orotocols

= Known at compile time (prod/con)
= Fixed per run (prod/con)
= Dynamic (migratory)

33

Ml -> MESI

| —
| —

52

MESI

Mi

MSI

