
Results and Observations 

•  Sparsified nets lead to comparable partition 
quality for significantly reduced hypergraph 
size 
 

•  Tuning parameter tol gives flexibility to trade 
off: 
– Quality of partition 
– Computation and storage costs 
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As 

Preliminary Experiments 
•  Set of small test matrices from UFSMC [Davis ‘94] 

•  tol = 0.5 (half-dense), 4 parts, s∈{2, 3, 4} depending 
on fill in As 

 

•  Comparison of hypergraph size and communication 
volume for four strategies: 
–  s-level column nets 
–  Sparsified column nets (somewhere between s- and 1-level) 
–  1-level column nets 
–  Graph partitioning (A+AT) 

•  Software: PaToH [Catalyurek, Aykanat, ‘99] and Metis 
[Karypis, Kumar ‘98] 

14 
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The Matrix Powers Kernel	



Modeling Communication in Matrix Powers	



Heuristically Estimating Reachability	



Communication is Expensive	
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o  Cost of an algorithm = computation + communication	


o  Time/flop << 1/bandwidth << latency – gap increasingly exponentially!	


o  Algorithms must avoid communication  to improve efficiency	



o  Computes Asx(A, s, x) = [x, Ax, …, Asx]	


o  Only needs to read A once!	



o  Used to generate s Krylov basis vectors in 
Comm. Avoiding Krylov Subspace 
Methods	



o  In parallel, we avoid communication by 
doing s ‘expand’ phases upfront	



Works for 
general graphs!	



o  Previous implementation: graph partitioning of A+AT 	


o  Graph partitioning doesn’t accurately count comm. [Catalyurek 99]	


o  Poor approximation for unsymmetric matrices	


o  Doesn’t taken into account structure of As	



o  Hypergraph partitioning solves the first two problems…	


o  How can we extend the hypergraph model for SpMV to solve the third?	



PROBLEM: 
Computing these 
s-level nets is 
expensive (s 
Boolean SpMVs!) 
Is an 
approximation 
good enough?	



Preliminary Results	
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