

Hypergraph Partitioning for Computing Matrix Powers

Nick Knight and Erin Carson

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, and Samsung.

Communication is Expensive

- of an algorithm = computation + communication
- Time/flop << 1/bandwidth << latency gap increasingly exponentially!
- Algorithms must avoid communication to improve efficiency

The Matrix Powers Kernel

- \circ Computes $Asx(A, s, x) = [x, Ax, ..., A^sx]$ Only needs to read A once!
- Used to generate s Krylov basis vectors in Comm. Avoiding Krylov Subspace Methods
- o In parallel, we avoid communication by doing s 'expand' phases upfront

Works for general graphs!

red = 1-level dependencies green = 2-level dependencies blue = 3-level dependencies

'Expand' communication upfront, no 'fold' communication.

- Previous implementation: graph partitioning of A+A^T
 - o Graph partitioning doesn't accurately count comm. [Catalyurek 99]
 - Poor approximation for unsymmetric matrices
 - Doesn't taken into account structure of A^s
- o **Hypergraph partitioning** solves the first two problems...
- How can we extend the hypergraph model for SpMV to solve the third?

Modeling Communication in Matrix Powers

PROBLEM: Computing these s-level nets is expensive (s **Boolean SpMVs!**) Is an approximation good enough?

Heuristically Estimating Reachability

- Edith Cohen's Reachability Estimation ('94)
 - -O(n*nnz) time algorithm for estimating size of transitive closure (the size of each hyperedge in A^k)
 - Previous best was O(n*sqrt(m)) (Lipton and Naughton)
 - Adapted to compute col/row sizes in matrix product (for k repeated SpMVs, equivalent to k steps of the transitive closure)
- Motivation: DB-query size estimations, data mining, optimal matmul ordering, efficient memory allocation
 - New motivation: Reducing hypergraph partitioning time (partitioning time and building the column nets) for computing matrix powers

Algorithm Overview

- Initially assign *r*-vector of rankings (sampled from exponential R.V., $\lambda = 1$) to each vertex v
- In each iteration (up to k), for each vertex v, take the coordinate-wise minima of the r-vectors reachable from v(denoted S(v), non-zeros in column of A corresponding to v)

18% decrease

Preliminary Results

- Set of small test matrices from UFSMC [Davis '94]
- tol = 0.5 (half-dense), 4 parts, $s \in \{2, 3, 4\}$ depending on fill in A^s
- Comparison of hypergraph size and communication volume for four strategies:
- *s*-level column nets
- Sparsified column nets (somewhere between s- and 1-level)
- 1-level column nets
- Graph partitioning $(A+A^T)$
- Software: PaToH [Catalyurek, Aykanat, '99] and Metis [Karypis, Kumar '98]

Results and Observations

- Sparsified nets lead to comparable partition quality for **significantly** reduced hypergraph
- Tuning parameter *tol* gives flexibility to trade
- Quality of partition
- Computation and storage costs