Hypergraph Partitioning for Computing Matrix Powers
Nick Knight and Erin Carson

BERKELEY PARLAB

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DI1G07-10227). Additional support comes
from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, and Samsung.

Communication 1s Expensive

Preliminary Results

Modeling Communication in Matrix Powers

(s-level) row-nets represent » Set of small test matrices from UFSMC [Davis ‘94]

sequential (s-level) column-nets represent
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o Computes Asx(A, s, X) = [X, AX, ..., A%X]
o Only needs to read A once!

o Used to generate s Krylov basis vectors in
Comm. Avoiding Krylov Subspace
Methods

o In parallel, we avoid communication by
doing s ‘expand’ phases upiront
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Normalized Communication Volume for Various Partitioning Strategies
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Heuristically Estimating Reachability

* Edith Cohen’s Reachability Estimation (‘94)

— O(n*nnz) time algorithm for estimating size of transitive closure
(the size of each hyperedge in A¥)

* Previous best was O(n*sgrt(m)) (Lipton and Naughton)
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‘Expand’ communication upfront, no ‘fold’ communication.

Normalized Communication Volume (PaToH)
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Estimate size

o Previous implementation: graph partitioning of A+A'

o Graph partitioning doesn’t accurately count comm. [Catalyurek 99]

o Poor approximation for unsymmetric matrices
o Doesn’t taken 1nto account structure of AS

Algorithm Overview

 Initially assign r-vector of rankings (sampled from

exponential R.V., A= 1) to each vertex v

 In each iteration (up to k), for each vertex v, take the

o Hypergraph partitioning solves the first two problems...
o How can we extend the hypergraph model for SpMV to solve the third?

coordinate-wise minima of the »-vectors reachable from v

(denoted S(v), non-zeros in column of 4 corresponding to v)

Reachability estimator due to

[

Cohen ‘94]

Build col. nets
for 4 (1-level
col. nets)

Use size/overlap
estimators as metric in
iterative swapping to
approx s-level col nets

of row nets
to determine
max s

Guessing net size using
reachability estimates

Guessing pins using
reachability estimates
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Results and Observations

Estimate sizes of
s-level col. nets,
drop col. net if >
tol to form A

* Sparsified nets lead to comparable partition
quality for significantly reduced hypergraph
S1Z€

Use estimator to
approximate s-

level col. nets for
A

* Tuning parameter fo/ gives flexibility to trade
off:

— Quality of partition

— Computation and storage costs




