
Results and Observations

•  Sparsified nets lead to comparable partition
quality for significantly reduced hypergraph
size

•  Tuning parameter tol gives flexibility to trade
off:
– Quality of partition
– Computation and storage costs

18

16

As

Preliminary Experiments
•  Set of small test matrices from UFSMC [Davis ‘94]

•  tol = 0.5 (half-dense), 4 parts, s∈{2, 3, 4} depending
on fill in As

•  Comparison of hypergraph size and communication
volume for four strategies:
–  s-level column nets
–  Sparsified column nets (somewhere between s- and 1-level)
–  1-level column nets
–  Graph partitioning (A+AT)

•  Software: PaToH [Catalyurek, Aykanat, ‘99] and Metis
[Karypis, Kumar ‘98]

14

Hypergraph Partitioning for Computing Matrix Powers	

The Matrix Powers Kernel	

Modeling Communication in Matrix Powers	

Heuristically Estimating Reachability	

Communication is Expensive	

Nick Knight and Erin Carson	

Berkeley Parlab

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes
from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, and Samsung.	

o  Cost of an algorithm = computation + communication	

o  Time/flop << 1/bandwidth << latency – gap increasingly exponentially!	

o  Algorithms must avoid communication to improve efficiency	

o  Computes Asx(A, s, x) = [x, Ax, …, Asx]	

o  Only needs to read A once!	

o  Used to generate s Krylov basis vectors in
Comm. Avoiding Krylov Subspace
Methods	

o  In parallel, we avoid communication by
doing s ‘expand’ phases upfront	

Works for
general graphs!	

o  Previous implementation: graph partitioning of A+AT 	

o  Graph partitioning doesn’t accurately count comm. [Catalyurek 99]	

o  Poor approximation for unsymmetric matrices	

o  Doesn’t taken into account structure of As	

o  Hypergraph partitioning solves the first two problems…	

o  How can we extend the hypergraph model for SpMV to solve the third?	

PROBLEM:
Computing these
s-level nets is
expensive (s
Boolean SpMVs!)
Is an
approximation
good enough?	

Preliminary Results	

17

