
Hypergraph Partitioning for Computing Matrix Powers

Future Work

Hypergraph Formulation

Partitioning

The Matrix Powers Kernel

Motivation

Erin Carson and Nick Knight

Results

Berkeley Parlab

Using Heuristics

 Communication is the performance bottleneck in
many algorithms
 Gap in communication/computation costs growing

exponentially

 Krylov Subspace Methods are commonly used for
solving linear systems
 Standard implementations are communication-bound due to

required SpMV and orthogonalization in every iteration

 Solution: rearrange algoroithms to perform s iterations at a
time without communicating (s-step methods)

 SpMV in each iteration is replaced with a call to the Matrix
Powers Kernel, which performs s SpMVs while reading the
matrix only once

 Used to generate s basis vectors for the Krylov Subspace

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par

Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems.

 Assuming the matrix is well-partitioned, we can
perform s repeated SpMVs (linear relaxation) reading
A only once

 How can we find a good partition of A for this
computation?

 Current approach
 Graph partition A+A_T

 Problems:

 Not sufficient if A is highly unsymmetric

 Graph partitioning does not accurately count
communications (citation)

 Only captures dependencies for 1 SpMV

 Solution: encode matrix powers dependencies in a
hypergraph

 For SpMV: column-net model – hyperedge for each
column, vertex for each row. Vertex is in hyperedge
if there is a nonzero in that row, col

 New idea: k-level Column Nets

 To represent s SpMVs, union column nets via
BFS: s steps of the transitive closure

 If we construct a hypergraph using our k-level
Column Net model, the cost of a p-way partition is
exactly the communication required between p
processors for the matrix powers computation using
that partition

Figure: Example of k-level column net model for a tridiagonal matrix. On the right, we see the

equivalent hypergraph. Black lines represent dependencies for Ax, red lines represent additional

dependencies for computing (A^2)x.

 Constructing the full k-level column nets is a significant
preprocessing cost

 Can we reduce the cost of constructing and partitioning
the hypergraph by using heuristics?

 Some ideas:

 Sparsification of the input matrix

 Dropping rows with many nonzeros during
construction or dropping large nets from
consideration when partitioning

 Approximating k-level column nets with 1-level
column nets + improvement by iterative swapping

 Implementation and improvement of heuristic strategies

 Incorporate load balancing costs into hypergraph
formulation

 Involves solving a multi-constraint hypergraph
partitioning problem

 Experiment with 2D partitions (involves communication
in between levels of the matrix powers kernel)

 Provides greater flexibility in reducing overall
communication volume

Figures: Percent Reduction in Total Communication Volume over Metis

(left) and over 1-level nets (right). Shown for 5-pt stencil (top) and

unsymmetric matrix (bottom).

Figures: Depiction of a 2-way partition of

the hypergraph above. In this example,

nets 1 and 6 have connectivity 1

(internal), whereas the other nets have

connectivities of 2 (external).

 Hypergraph partitioning is
performed using the PaToH
software(http://bmi.osu.edu/~u
mit/software.html)

 “External nets” are those which
have vertices in more than one
partition

 It can be shown that the
problem of finding a partition
which minimizes
communication in a matrix
powers computation is
polynomial-time reducible to
finding the minimum p-way cut
of the constructed hypergraph.

 In other words, the
connectivities of the nets
count the data that must be
communicated across
partitions.

