
Hypergraph Partitioning for Computing Matrix Powers

Future Work

Hypergraph Formulation

Partitioning

The Matrix Powers Kernel

Motivation

Erin Carson and Nick Knight

Results

Berkeley Parlab

Using Heuristics

 Communication is the performance bottleneck in 
many algorithms
 Gap in communication/computation costs growing 

exponentially

 Krylov Subspace Methods are commonly used for 
solving linear systems
 Standard implementations are communication-bound due to 

required SpMV and orthogonalization in every iteration

 Solution: rearrange algoroithms to perform s iterations at a 
time without communicating (s-step methods)

 SpMV in each iteration is replaced with a call to the Matrix 
Powers Kernel, which performs s SpMVs while reading the 
matrix only once

 Used to generate s basis vectors for the Krylov Subspace
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 Assuming the matrix is well-partitioned, we can 
perform s repeated SpMVs (linear relaxation) reading 
A only once

 How can we find a good partition of A for this 
computation?

 Current approach
 Graph partition A+A_T

 Problems:

 Not sufficient if A is highly unsymmetric

 Graph partitioning does not accurately count 
communications (citation)

 Only captures dependencies for 1 SpMV

 Solution: encode matrix powers dependencies in a 
hypergraph

 For SpMV: column-net model – hyperedge for each 
column, vertex for each row.  Vertex is in hyperedge 
if there is a nonzero in that row, col

 New idea: k-level Column Nets

 To represent s SpMVs, union column nets via 
BFS: s steps of the transitive closure

 If we construct a hypergraph using our k-level 
Column Net model, the cost of a p-way partition is 
exactly the communication required between p 
processors for the matrix powers computation using 
that partition

Figure:  Example of k-level column net model for a tridiagonal matrix. On the right, we see the 

equivalent hypergraph. Black lines represent dependencies for Ax, red lines represent additional 

dependencies for computing (A^2)x.

 Constructing the full k-level column nets is a significant 
preprocessing cost

 Can we reduce the cost of constructing and partitioning 
the hypergraph by using heuristics?

 Some ideas:

 Sparsification of the input matrix

 Dropping rows with many nonzeros during 
construction or dropping large nets from 
consideration when partitioning 

 Approximating k-level column nets with 1-level 
column nets + improvement by iterative swapping

 Implementation and improvement of heuristic strategies

 Incorporate load balancing costs into hypergraph 
formulation

 Involves solving a multi-constraint hypergraph 
partitioning problem

 Experiment with 2D partitions (involves communication 
in between levels of the matrix powers kernel)

 Provides greater flexibility in reducing overall 
communication volume

Figures: Percent Reduction in Total Communication Volume over Metis

(left) and over 1-level nets (right). Shown for 5-pt stencil (top) and 

unsymmetric matrix (bottom).

Figures: Depiction of a 2-way partition of  

the hypergraph above. In this example, 

nets 1 and 6 have connectivity 1 

(internal), whereas the other nets have 

connectivities of 2 (external).

 Hypergraph partitioning is 
performed using the PaToH 
software(http://bmi.osu.edu/~u
mit/software.html)

 “External nets” are those which 
have vertices in more than one 
partition

 It can be shown that the 
problem of finding a partition 
which minimizes 
communication in a matrix 
powers computation is 
polynomial-time reducible to 
finding the minimum p-way cut 
of the constructed hypergraph.

 In other words, the 
connectivities of the nets 
count the data that must be 
communicated across 
partitions. 


