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 Krylov Subspace Methods are commonly used for solving 
linear system

 Standard implementations are communication-bound due to 
required SpMV and orthogonalization in every iteration

 Solution: rearrange algorithms to perform s iterations at a 
time without communicating (s-step methods)

 SpMV in each iteration is replaced with a call to the Matrix 
Powers Kernel, which performs s SpMVs while reading the 
matrix only once

 Used to generate s basis vectors for the Krylov
Subspace
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 Communication-Avoiding Kernels

 Matrix Powers Kernel (one matrix, one input vector)

 Tall-Skinny QR 

 One-sided Krylov Subspace Methods

 Conjugate Gradient [Hoemmen, 2010]

 GMRES [MHDY09]

 Lanczos [Hoemmen, 2010]

 Two-sided Krylov Subspace Methods

 BiCG

 Problem: BiCG is unstable in practice

 Preliminary Work

 2-Term recurrence version of BiCG

 Conjugate Gradient Squared (CGS)

 Main result: CA-BiCGStab:

 Original method formulated by van der Vorst. 1992)

 Variation of CGS, remedies irregular convergence 
patterns

 Polynomial defined recursively at each step acts as a 
smoother

 smoothes against previous residual

 CA Formulation

 2-term recurrence, similar to CGS and BiCG

 Naïve preconditioning approach: s SpMVs, s solves

 Problem: requires a different approach/implementation for 
each type of preconditioner!

 Current algorithms

 Polynomial preconditioners (Saad, Toledo)

 M is polynomial in A – incorporated into Newton basis

 CA-Left-preconditioning (Hoemmen, 2010)

 Preconditioners and matrices  with low rank-off 
diagonal blocks, same sparsity structure

 1 + o(1) more messages than single SpMV, 1 
preconditioner solve

Computation and Storage Costs

Matrix powers 3 x A

Storage 3Ns + 5N + O(s2)

Dense Work O(Ns2 + s3)

Name n NNZ
Pattern

Symmetry

Value 

Symmetry

Condition 

Number
Application

dw2048 2048 10114 No No 5.3015e3

Electromagnetics

Problem 

(H. Dong, 1993)

young3c 841 3988 No No 1.1532e4
Acoustics Problem 

(D.Young, 1984)

 Figures: Convergence Results for dw2048 matrix for s=2 and s=20

 Shown for 2-term recurrence versions of BiCG, CGS, and 
BiCGStab. Black line indicates standard (Matlab) implementation.

 We see here that the BiCGStab method is indeed more stable for 
higher s values, especially using the monomial basis 

 Why? Too much roundoff error in Newton basis?

 Figures: Convergence Results for young3c matrix for s=2 and s=10

 Shown for 2-term recurrence versions of BiCG, CGS, and BiCGStab. 
Black line indicates standard (Matlab) implementation.

 We see here that the BiCGStab method is again more stable 
(monomial basis follows standard iterates up until convergence)

 The first plot indicates that although BiCGStab is, in general, more 
stable, the optimal method to use is problem dependent (BiCG does 
the best)

Figure (right):

Dependencies in 2-
Term Recurrence 
version of BiCG. 
Demonstrates need for 
two matrix powers calls 
(same matrix, different 
RHSs).

 Our communication avoiding formulations of CGS and 
BiCGStab require more than one matrix powers evaluation

 Same matrix, but different right hand sides (various state 
vectors stored for iterates)

 IDEA: We can compute multiple RHSs at the same time! 

 SIMD parallelism

 Still only requires reading A once

 Finish BiCGStab(l)

 When s > 8, normal equations become ill-conditioned

 Use rank-deficient least squares?

 Extension to other classes of preconditioners

 Chebyshev basis for matrix powers

 Based on spectrum of A. Could provide more stability

 Parallel C Implementations for performance testing

 Tests with restarting and extended precision, varying s 
values

 could help with stability and convergence


