Avoiding Communication in Two-Sided Krylov Subspace Methods

Nick Knight and Erin Carson

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from ParLab affiliates National Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems.

Motivation

- Krylov Subspace Methods are commonly used for solving linear systems.
- Standard implementations are communication-bound due to required SpMV and orthogonalization in every iteration.
- Solution: rearrange algorithms to perform s iterations at a time without communicating (s-step methods).
- SpMV in each iteration is replaced with a call to the Matrix Powers Kernel, which performs s SpMVs while reading the matrix only once.
 - Used to generate s basis vectors for the Krylov Subspace.

Previous Work

- Communication-Avoiding Kernels
 - Matrix Powers Kernel (one matrix, one input vector).
 - Tall-Skinny QR.
- One-sided Krylov Subspace Methods
 - Conjugate Gradient [Hoemmen, 2010].
 - GMRES [MHY09].
 - Lanczos [Hoemmen, 2010].
- Two-sided Krylov Subspace Methods
 - BiCG.
 - Problem: BiCG is unstable in practice.

New CA-KSMs

- Preliminary Work
 - 2-Term recurrence version of BiCG.
 - Conjugate Gradient Squared (CGS).
 - Main result: CA-BiCGStab:

 ![Computational and Storage Costs](image)

 - Variation of CGS, remedies irregular convergence patterns.
 - Polynomial defined recursively at each step acts as a smoother.
 - Smooths against previous residual.
 - CA Formulation.
 - 2-term recurrence, similar to CGS and BiCG.

Convergence Results

- Figures: Convergence Results for dw2048 matrix for s=2 and s=20.
 - Shown for 2-term recurrence versions of BiCG, CGS, and BiCGStab.
 - Black line indicates standard (Matlab) implementation.
 - We see here that the BiCGStab method is indeed more stable for higher s values, especially using the monomial basis.
 - Why? Too much roundoff error in Newton basis?

- Figures: Convergence Results for young3e matrix for s=2 and s=10.
 - Shown for 2-term recurrence versions of BiCG, CGS, and BiCGStab.
 - Black line indicates standard (Matlab) implementation.
 - We see here that the BiCGStab method is again more stable (monomial basis follows standard iterates up until convergence).
 - The first plot indicates that although BiCGStab is, in general, more stable, the optimal method to use is problem dependent (BiCG does the best).

New Matrix Powers Kernels

- Our communication avoiding formulations of CGS and BiCGStab require more than one matrix powers evaluation.
 - Same matrix, but different right hand sides (various state vectors stored for iterates).
- IDEA: We can compute multiple RHSs at the same time.
- SIMD parallelism
- Still only requires reading A once.

Preconditioning

- Naive preconditioning approach: s SpMVs, s solves.
 - Problem: requires a different approach/implementation for each type of preconditioner.
 - Current algorithms.
 - Polynomial preconditioners (Saad, Toledo).
 - M is polynomial in A – incorporated into Newton basis.
 - CA-Left-preconditioning (Hoemmen, 2010).
 - Preconditioners and matrices with low rank-off diagonal blocks, same sparsity structure.
 - 1 + o(1) more messages than single SpMV, 1 preconditioner solve.

Future Work

- Finish BiCGStab(I).
 - When s > 8, normal equations become ill-conditioned.
 - Use rank-deficient least squares?
- Extension to other classes of preconditioners.
- Chebyshev basis for matrix powers.
- Based on spectrum of A. Could provide more stability.
- Parallel C Implementations for performance testing.
- Tests with restarting and extended precision, varying s values.
 - Could help with stability and convergence.