
Parallel
Applications

Parallel
Hardware

Parallel
Software IT industry

(Silicon Valley)
Users

1

Hardware Acceleration for Tagging

Sarah Bird, David McGrogan, John Kubiatowicz, Krste
Asanovic

June 5, 2008

2

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o

s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

3

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Multicore/GPGPU RAMP Manycore

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o

s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

Efficiency Language Compilers

Hypervisor
OS Libraries & Services

Legacy OS

Multicore/GPGPU RAMP Manycore

4

Does Security Matter?
 Code bases are growing

 Linux 2.6.25 has 9 million lines of code*

 Difficult to verify all of the code

 More code is interacting on parallel platforms

 Need to provide isolation

 More 3rd party software

 Mac Dashboard Widgets

 Browser Plug-ins

 Device drivers

 Growing amount of personal data on our computers and web

 Google has health information on the web

 Webservers access thousands of users personal data

 Need to prevent one users data from being leaked to a different user

*www.heise-online.co.uk

Tagging
 Read and Write access

 Contains a categories and
clearance levels

 Labels form a partial order

 Used on threads, devices,
data, messages, etc

 Information is allowed to flow
from less tainted labels to
more tainted labels.

5

1 2

3

2

Terminology

 In this talk,

6

Categories (61 bits)

Labels (n categories & their
levels)

Tags (compressed labels)

Levels 0 1 2 3 4 5 *

3

Tagging Management
 New Categories

 Threads can ask for a new category

 The thread now owns that category and
it’s added to the threads label

 Enforcement

 On read and writes, compare labels

 On access to devices, the devices label is
compared to the data label

 Sharing Data

 The owning thread can give category
permission and a max clearance level to
another thread or device.

7

*

3
*

3 3

* 3

Does Tagging Scale?

 Protection information carried in labels
 Only requires local comparisons of the thread or

device label with the data label

 Updates to permissions/labels need to only be
updated on the device, data, or thread

 Allocation of new categories doesn’t need to
be global

 Allocating space needs only the calling
thread’s label

8

9

Tagging and Tessellation

 Mandatory Access Control on Channels and Objects, ala
Asbestos/HiStar
 Create Secure channels in memory using labels

 Anarchistic Privilege Control

 Categories can be created “on the fly” by users
 Dynamic and Flexible Protection

LA LB Allow if LALB Secure

Channel

Hardware vs. Software

 Software can be expensive
 3x overhead for LIFT*

 2 to 3x overhead for HiStar* in many cases

 Does the os scale?

 What about protection check in hardware?
 Reduces the trusted code

Much lower overhead in steady state condition

10 *http://opera.cs.uiuc.edu/paper/LIFT-Micro06.pdf http://www.scs.stanford.edu/histar/

Tag Everything

 64 bit label for each 64 bit word
 100% memory overhead

 100% cache overhead

 100% network overhead

 Protection checks are a simple comparison

 Variable Labels?
 Larger overheads!

 Complex memory and network controllers

 How do we even store this?

 In memory?

 In the cache?

11

Pointer

Dealing with Tag Explosion:
Memory
 Unlikely that nearby data has a different label

 Take a page out of fine-grained memory protection

12

Address Label/Tag

0x0000

0x0020

0x1000

Pointer

 Linear Representation

 Takes advantage contiguous
segments with the same label

 More compressed

 Insert must slide down everything

 Completely flexible representation

 Binary Search to look up

 Simple look up algorithm

 Less flexible

 Easy insert

 Multilevel Page Table

Page Table

 3-Level Page Table with 128 Byte cache line
granularity
 3 memory accesses per cache line on read

 Could be combined with translation

 1st Level 10 bits

 2nd Level 10 bits

 3rd Level 5 bits

13

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Memory Overhead

Percent of non-contiguous 4k segments

P
er

ce
n
t

O
v
er

h
ea

d

Dealing with Tag Explosion:
Cache
  Can’t afford to store a variable sized label for

every cache line
 Represent Labels with Tags!

 Local Relabeling Scheme
Map active categories to bit vectors where each bit

represents an active category

Makes protection checks very easy

14

3 113 012 2

What about the network?

 Network overhead is still 100% or more

 Network controllers need to deal with the
variable length labels

 All reads and writes have to go through the
translation scheme

 To talk to a different node we have to
translate from the bit vector back to the label
and then to the bit vector for the receiving
node

15

Dealing with Tag Explosion:
Network
 Must change labels into Tags before the network

 Tags must be universally understood

 Nodes can communicate without translation

 Relabeling Engine

 Changes labels in 16-bit tags

 Network overhead is now only 16 bits per Cache Line
= 1.5% overhead

16

3 2 15 2

How do handle protection checks?

 Can’t easy compare tags since they don’t
contain the label and level information
 Precalculate the comparison between 2 tags

 Done with software handler

 Store in memory

 Protection Lookaside Buffer
 Thread Tag

 Data Tag

 Read or Write

17

System View

18

Evaluation

 Simics Simulator
 Pentium 4 processor

 20 Mhz

 256 MB Memory

 Linux kernel 2.6.15

 HiStar kernel (single core)

 Custom Memory Hierarchy

 Insert delays for the relevant
misses

19

 Synthetic Benchmarks
 Vector Write

 Image Histogram

 7-Point Stencil

Single Core Results

20

Single core experiments comparing the runtime of a plain system without information flow
control to Lighthouse and HiStar using synthetic vector benchmarks. The y axis is cycles.

Multicore Results

21

MultiCore experiment comparing the
runtime a plain system without

information flow control to Lighthouse
using the image histogram benchmark.
The y axis is cycles and the x axis is

processors.

MultiCore experiment comparing the
runtime a plain system without

information flow control to Lighthouse
using the stencil benchmark. The y

axis is cycles and the x axis is
processors.

Future Work

 Develop benchmarks that utilize categories to
help determine best, worst, and average
usage case.

 Implement a more realistic model of the
structures

 Run experiments to analyze area vs.
performance tradeoffs

22

23

Conclusions

 Parallel is happening

 Security is being
increasingly important

 Tagging provides a scalable
mechanisms for enforcing
isolation

 Software checks can be
expensive

 Hardware support can
provide a low overhead
mechanism to support
tagging

 Tagging could have many
uses for security and
debugging

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

O
S

A

rc
h
.

P
ro

d
u
c
ti
v
it
y

E
ff
ic

ie
n
c
y

C
o
rr

e
c
tn

e
s
s

A
p
p
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with

Replay

Directed

Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

Easy to write correct programs that run
efficiently and scale up on manycore

D
ia

g
n

o
s
in

g
 P

o
w

e
r/

P
e

rf
o

rm
a
n
c
e
 B

o
tt

le
n

e
c
k
s

24

Acknowledgments

 Thanks to

 Profs John Kubiatowicz, Krste Asanovic, Eric Brewer, Joe
Hellerstein

 UCB Grad students David McGrogan, Henry Cook, Mark
Murphy, Scott Beamer, Colleen Lewis, Cynthia Sturton

 HiStar Designer Nickolai Zeldovich

Questions?

slbird@eecs.berkeley.edu

25

Tagging Management
 New Categories

 Threads can ask for a new category which is generated
by encrypting a 61 bit counter

 The thread now owns that category and it’s added to
the threads label

 Enforcement

 On read and writes, compare the threads label with the
data address label to see if it can read (thread >= data)
or write (data >= thread).

 On access to devices, the devices label is compared to
the data label

 Sharing Data

 The owning thread can give category permission and a
max clearance level to another thread or device.

 Allocating Space

 A thread may allocate space to write in. The space is
given the thread’s current label.

 26

*

3
*

3 3

* 3

3 3

Tagging Management
 New Categories

 Threads can ask for a new category

 The thread now owns that category and it’s added to the threads label

 Hardware instruction sends the thread’s tag to relabeling engine. Relabeling engine allocates
new category and a new tag and returns new tag and new category to the thread.

 Enforcement

 On read and writes, compare the threads label with the data address label to see if it can read
(thread >= data) or write (data >= thread).

 On access to devices, the devices label is compared to the data label.

 Comparator looks up thread tag and data tag in the PLB. If not in PLB then the two tags are
sent to the relabeling engine. The relabeling engine looks them up in the Label Comparison
Store. If there is a miss in the Label Comparison Store, a software handler is invoked to look
up the labels and compare them.

 Sharing Data

 The owning thread can give category permission and a max clearance level to another thread or
device.

 Hardware instruction sends the category and thread id to the relabeling engine which updates
the max clearance level for that thread in the category. The thread may then ask to raise its
actual clearance level in that category which results in a new tag.

 Allocating Space

 A thread may allocate space to write in. The space is given the thread’s current label.

 Update the protection table for that area with the thread’s tag.

 Allocating scheme needs to make sure that old data can’t be read (clear on either allocate or
deallocate).

27

