

Communication Bounds for Heterogeneous Architectures

Grey Ballard, James Demmel, Andrew Gearhart

{ballard, demmel, agearh}@cs.berkeley.edu

Summary

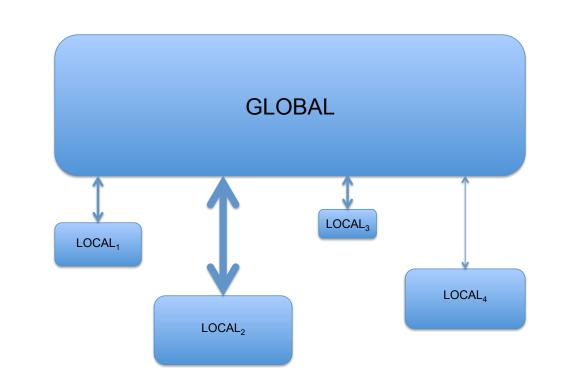
- New communication lower bounds for nearly all direct linear algebra problems on heterogeneous architectures
- New algorithms that attain lower bounds
- Preliminary empirical results that support theory

Motivation/Background

Communication

- Defined as data movement between processors and global memory
- Measured as # words (inverse bandwidth) and # messages (latency)
- Matters because it's much slower relative to flops...and this is getting worse

Established Communication Bounds


Lower bound on:	Lower bound	
# words (W)	max ($\left(\text{\#inputs} + \text{\#outputs}, \text{\#flops} / \left(\text{fast memory size} \right)^{1/2} \right)$
# messages (L)	max ((#inputs + #outputs, #flops / (fast memory size) $^{3/2}$)

• Results due to Ballard/Demmel/Holtz/Schwartz [BDHS09], Hong/Kung [HK81], Irony/Tishkin/Toledo [ITT04]

Model

Outline

- Consider a heterogeneous machine to be a collection of P compute elements linked via a global memory
- We assume that the problem data initially lives in global memory and allow each proc_i to be described according several machine parameters

Machine Parameters

- M_i : Size of the local memory of $proc_i$
- γ_i : Floating point performance of proc_i (seconds/flop)
- β_i : Inverse bandwidth of proc_i (seconds/word)
- α_i : Latency of proc_i (seconds/message)

Lower Bounds

- Time cost of message with w words: $T_{msg} = \alpha + \beta w$
- proc_i's runtime: $T_i = \gamma_i F_i + \beta_i W_i + \alpha_i L_i$
- General bound on parallel runtime (I = #inputs, O = #outputs, G = total flops):

$$T \ge \min_{\sum F_i = G} \max_{1 \le i \le P} \gamma_i F_i + \beta_i \max \left\{ I_i + O_i, \frac{F_i}{8\sqrt{M_i}} \right\} + \alpha_i \max \left\{ \frac{I_i + O_i}{M_i}, \frac{F_i}{8M_i^{3/2}} \right\}$$

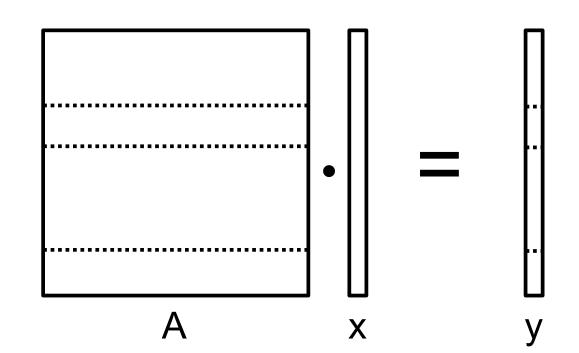
-See [BDG11] for details and proof

BLAS2-type bound

- ullet Let $\xi_i=\gamma_i+eta_i+rac{lpha_i}{M_i}$
- ullet We obtain $T\geq \max_{1\leq i\leq P}\xi_iF_i=rac{G}{\sumrac{1}{\xi_j}}$ where

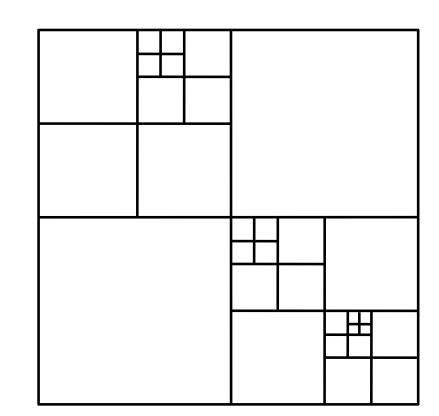
$$F_i = \frac{\frac{1}{\xi_i}}{\sum \frac{1}{\xi_i}} G \tag{1}$$

BLAS3-type bound


- Let $\delta_i = \gamma_i + \frac{\beta_i}{8\sqrt{M_i}} + \frac{\alpha_i}{8M_i^{3/2}}$
- ullet We obtain $T\geq \max_{1\leq i\leq P}\delta_iF_i=rac{G}{\sumrac{1}{\delta_j}}$ where

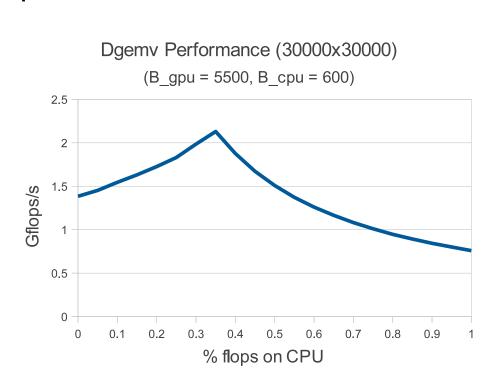
$$F_i = \frac{\frac{1}{\delta_i}}{\sum \frac{1}{\delta_j}} G \tag{2}$$

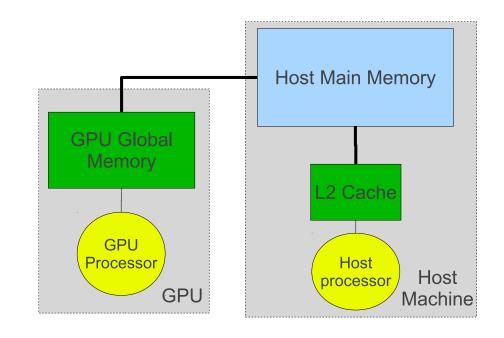
New Algorithms

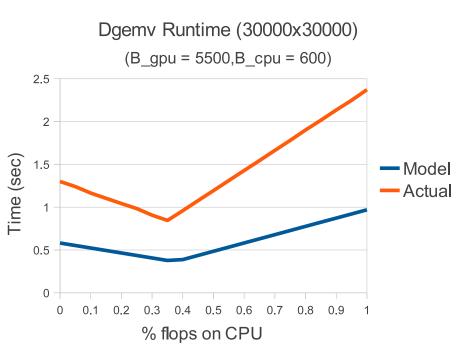

Heterogeneous Matrix-Vector Multiplication (HGEMV)

- Assume input matrix is stored in row-major format
- Set flop distribution according to Equation (1)
- Split matrix row-wise
- Each processor computes its portion of the result

Heterogeneous Matrix-Matrix Multiplication (HGEMM)


- Assume input matrix is stored in a block-recursive format
- Set flop distribution according to Equation (2)
- Convert each fraction of flops to octal: $0.d_1^{(i)}d_2^{(i)}\cdots d_k^{(i)}$
- ullet Using square recursive GEMM, assign $d_j^{(i)}$ subproblems at level j of the recursion to proc_i
- Each processor computes its assigned subproblems using square recursive GEMM




Preliminary Results

Heterogeneous Matrix-Vector Multiplication (HGEMV)

- CPU/GPU System (Intel Xeon E5405 CPU and GTX280 GPU)
- host DRAM was considered to be "global memory"
- only one core of the CPU was used for results
- Runtime bound accurately predicted optimal work distribution

Credits

• Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227).

References

[BDG11] G. Ballard, J. Demmel, and A. Gearhart. Communication lower bounds for heterogeneous architectures, 2011. Submitted to ACM SPAA. [BDHS09] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. A general communication lower bound for linear algebra, 2009. Submitted to SIMAX.

[HK81] Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In STOC '81: Proceedings of the thirteenth annual ACM symposium on theory of computing, pages 326–333, New York, NY, USA, 1981. ACM.

D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory matrix multiplication. *J. Parallel Distrib. Comput.*, 64(9):1017–1026, 2004.