Parallel Webpage Layout

Leo Meyerovich, Chan Siu Man, Chan Siu On, Heidi Pan

Krste Asanovic, Rastislav Bodik
and many others from the UPCRC Berkeley project

UC Berkeley

Par Lab Research Overview

SINZIN_

Personal| Image |Hearing, Speech EE

"\\0(\ Health |Retrievall Music [°P Bro
NG
N c " —
omposition oordination Language
g C tion & Coordination L (C&CL)
\)Gs{.\\i\\'\‘ S C&CL Compiler/Interpreter
T
o e
— Frameworks
()
=| Efficienc
) (\Cﬂ ch Languageys Sketching
?3{\0\ ﬂe(22 Autotuners 1
\/fa 7 Legacy Schedulers Communication &
O|_Code Synch. Primitives
% Efficiency Language Compilers
S - - -
06 = Legacy OS OS Libraries & Services

Hypervisor

Static
Verification

Type
Systems

Directed
Testing

Dynamic
Checking

Debugging
with Replay

PSO\\‘ Multicore/GPGPU RAMP Manycore

Correctness

Parallel Web Browser

Why the browser?

— an important application platform
— browser wars again: competing on performance (latency)

- how important? handheld pageload is tens of CPU seconds

Why a parallel browser?
— soon in your phone? 4 cores x 2 threads x 8-wide SIMD = 64

— parallelism is more energy efficient

Technical challenge
— Parallelize the browser to run with 100-way parallelism

This Talk: Parallelize Single Page Layout

e Page layout (HTML+CSS) is the LaTeX of the Web

— latex takes seconds to format a document
— but pageload should be 20-100ms
— pageload is a bottleneck : 51% of CPU time on IE8

e Page layout is a challenging “desktop” application

— not parallelized before
— specifications: often ambiguous and sequential

— low-latency: problems are short-running
— less understood motif: tree computation
e Knuth: “Multiprocessors are no help to TgX”

Our Contributions

1. Analyzed browser performance
— layout is a bottleneck; we identified its critical motifs

2. Distilled essential CSS and wrote a declarative spec for it
— crucial step for exposing parallelism hidden by today’s spec

3. Developed first parallel page layout algorithms
(1) matching: task parallel, 20x speedup, strongly scales to 16
(2) solving: task parallel, 4x speedup, strongly scales to 3 cores

4. Future steps — components and algorithms

Overall Page Layout Problem

What the browser does GEP @@ @ J
<body> p { width: 100% } o
hello img { width: 100px; v,
 + float: left } g '/Aié\ﬁﬁf
<p>world p img { width: 1ept } ok ok ok
ok ok ok ok ok
HTML CSS styling rules A
Our page layout subproblem <body>
Input: document tree + CSS rules /\ XX=?, y=?
Output: sizes and positions of tree nodes gug'h';'r'i_é_hfp_>_-_——————"""""ETi_g-'ﬁ;Fi_é_ﬁ_t <p>
Steps: determine styling rules; solve constraints /.-~
25% 25% -~ ay
p | width=100% DI hello =" ok ok ok ok ok
| width=100px - ;:1"'ﬂ9§t;'_el‘°(t);
& | float=left) / width=10px x=12, y=17

| e M world
width=10px PR

The layout spec is confusing

Example of spec:

— “In general, the left edge of a line box touches the left
edge of its containing block... However, floating boxes
may come between [them].”

Hard to implement correctly, even sequentially.

file:// /Users/ /Desk ”esﬂ (<D @ O @
Disable AppSearch
. hello
//’ A hello
___lworld -
ok ok ok ok ok //,SL,\\\ world
~lok ok

ok ok ok

Safari Firefox

NN

A0 =

Flow: sequential layout in today’s browsers

simplest way to implement the spec seems to be to
(mostly) flow the elements sequentially in order

Flow is guided by a cursor

Cursor A points to where next element goes

<body>

TN

r_____

>
- |
~ |

i"- l ?‘I ------------ -E

<p> <p> ' / \/\ World :
hello A ok ok ok ok ok i - Ok (A)k A i
| AAAAA '} ok ok ok i

world : A A A :

Flow’s dependences

w=100, fs=12 h=40

x=0, y=0
w=100, fs=12 K=o
------------- <body>
fs, A, w ‘
fs=50% v 7 19, BV
w=100, fs=6 " <p> € T
x=0, y=0 w=100, fs=12
h=10 x=0, y=10
h=40
fs, A, w
fs, A, wi w=100, fs=12

w=40, fs=6 w=50, float=left h=10 ,"’
x=0, y=0 w=50
h=10 x=0, y=10 !
h=20 fSa A’ Wi
w=30, fs=12

x=50,y=10 !]

h=10 = world -

constraints not specified if equality (e.g., inherited) or intrinsic (e.g., default image size or aspect ratio)

Dependencies prevent parallelism

fs=50%

w=100, fs=6 -

x=0, y=0
h=10

PR

fs, A, W A

\

= hello \

w=40, fs=6
x=0, y=0
h=10

w=100, fs=12 h=40

x=0, y=0

w=200, fs=12 <
--------------- <body>

h=40

w=50, float=left h=10

s\
w=100, fs=12
x=0, y=10

fs, A, w

w=100, fs=12 |
x=0, y=10/

w=50 !

x=0, y=10 ;

h=20 f87 A7 W".
w=30, fs=12
x=50,y=10
h=10

A

~—
~~e
~
Ss

world -

A
@]

Disable AppSearch |

hello

";;Sﬁ;:____

ok ok ok

> <p> |

Enable parallelism by doing part of work

w=100, fs=12 h=40

x=0, y=0

w=200, fs=12 <
--------------- <body>

~—
~~o
~
Ss

fs, A, w - ;
/,/ /// \
fs, A w

fs=50%

. ‘
w=100, fs=6 - S~ ——— <p>|
x=0, y=0 w=100, fs=12 \
h=10 x=0, y=10

! h=40
'=. fs, A, w
fSa A1 W‘.‘ \ <N=1dO, fs=12
* hello =0,y=10/"ps ¢
w=40, fs=6 w=50, float=left h=10 I
x=0, y=0 w=50 :
h=10 x=0, y=10 |
h=20 va As W
w=30, fs=12
x=50, y=10

h=10 A world

Parallel Layout Solving: Five Phases

Extensive analysis led us to five phases
These enable parallelism

\l, 1. font size, tentative Widths e s— —
I
1‘ 2. preferred widths: max, min | | —

\l, 3. final widths: break cycles by over-specifying CSS
1‘ 4. heights, relative x/y positions

J, 5. absolute x/y positions

~~o

~
SS

> hello - | <> okokok ok ok > hello
fs=_6 1;Io_a1tZ= left L fs=12
Wp—40 S__SO /'— :: Wp:lo
w,_ =40 W= " w,_=10
w_=50 m
m world -

fs=12 w =30, w,,=30
Phase 1: font size, temporary width

Phase 2: preferred max & min width

Phase 3: width

Phase 4: height, relative x/y position
Phase 5: absolute x/y position

 | <>

1 \
1 \
1 1
/7
’I 1
,,— 1
4 1
1
7
1
4
7

’
-

-
-
-

-

PN

Parallel Layout: Speculative Evaluation

e Did not break dependencies for floats

— might stick out of paragraphs E- i

NN

Parallel Layout: Speculative Evaluation

e Did not break dependencies for floats

R e

— might stick out of paragraphs | i

e Speculate: assume no floats
e Check

e Patch up as needed

PANVANNG

/ﬁ“\
Parallel Layout: Speculative Evaluation

e Did not break dependencies for floats
— might stick out of paragraph

e Speculate: assume no floats
e Check

e Patch up as needed
— floats rare

— We believe overflow is
minimal

ZININ_

Berkeley Style Sheet Layout Language

e Can compile essential CSS into it
e Refactored CSS to separate features
e Simplifies: correctness, parallelization, use

V —
{yacc — 0}
({$1.z = 0;
$1.w = ¢($0.w, $1.tempw, $1.m, $1.p)}
(VI H)
{$1y = Yacc;
Yace < Yacc T $1-h})*
{$0.h = $0.temph X yaec}

Analysis

e Model: sequentia

speed ~= Firefox speed

e Cilk++: 4x speedup, scales to 3 cores

e Need to SIMDize

eaves
Modeled Speedup w/Cilk++

N

Average Speedup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Hardware Threads
— Eight socket x 4 core AMD Opteron 2356 Barcelona Sun X4600

Dual socket x 4 core AMD Opteron 2356 Barcelona Sun X2200

Preproduction 2 socket x 4 core x 2 thread Intel Xeon Nehalem

Rule Matching: Problem Statement

* Matching
<body>

— Tag path (img: <body> <p>) ——
— Rule Selectors

<p> <p>
— For each tag path: which /\ %\
selectors are ~substrings?

] heHo *j ok ok ok ok ok
* Rule resolution Lwidthetgopel-
~ Prioritize properties by float=left | | world
rule order: lower overrides wudth 10px | |
A 4 V v
selectors p img pimg

properties | width=100% | width=100px | width=100px
float=left

Rule Matching: Parallelization

e ~600 nodes, 1000s rules

* Assign nodes to cores

— load balancing: random assignment

e SIMDizable?

hello | =- ok ok ok ok ok
L\ world
vy L
selectors p img pimg
properties | width=100% | width=100px | width=100px
float=left

Analysis

e Results
— perfect scaling: up to 10 cores
— 20X speedup on 32 cores

— ... but with python
e interp. overhead (seq.)
e procs., not threads

e Future
— C++ implementation
— SIMD rule matching

32

Average Speedup
N — N N N
BN (0] N (o] o BN 0]

o

Speedup vs # Cores (w/ Python)

-

Slashdot
—Rotten Tomatoes
=—=Wikipedia
=—=NY Times
I
|
1 4 8 16 32

Hardware Threads
8 socket x 4 cores AMD Opteron 2356 Barcelona

Takeaways

e Artifacts

— BSS/CSS specification & dependency decomposition
— 4x solving speedup (untuned), 20x matching (in python)

e Lessons
— 4Xx << 100x =2 SIMDize low-level libraries (e.g., fonts)
— motifs: low latency tree ops, vectors, pixel blending
— attribute grammars helped

* Next steps
— tune tasks, SIMD kernels, bigger scope of model
— implications for concurrent scripts using layout?

(questions?)

