

2020 Architecture Research with RISC-V and Chisel

Yunsup Lee Andrew Waterman

Jonathan Bachrach, Scott Beamer, David Patterson, Krste Asanovic

Facilitating Credible Architecture Research

- Simulators are useful for measuring cycle counts—useless for power, area, cycle time
- But microarchitects must balance all of these!
- Need an end-to-end research methodology to close the feedback loop...
- ...but traditional HW design approaches with commercial ISAs are far too tedious

RISC-V Software Stack

- GCC 4.4 with Newlib C library
- "Proxy Kernel" to support POSIX calls by forwarding to a Linux host machine
- Coming soon, Linux and ROS/Tessellation

trainwreck: A RISC-V Prototype

- Simple 3-stage pipeline with decoupled data memory interface
- 64-bit fixed-point datapath, double-precision FP

RISC-V ISA

	31 27	26 22	21 17	16 12	11 10 9	7	6	0	
	rd	rs1 rs2 funct10				0	pcode	R-type	
	rd	rs1	rs2	rs3	funct5		opcode		R4-type
	rd	rs1	imm[4:0]	imm[11	:5] fi	ınct3	0	pcode	I-type
	imm[4:0]	rs1	rs2	imm[11	.:5] fi	inct3	0	pcode	B-type
	rd							pcode	L-type
	jump offset [24:0]						opcode		J-type
inst[4:2]	000	001	010	011	100	10	1	110	111
inst[6:5]									(> 32)
00	LOAD	LOAD-FP	MISC-MEM		OP-IMM	MIS	SC	OP-IMM-3	32
01	STORE	STORE-FP	AMO		OP	LU	Л	OP-32	
10	MADD	MSUB	NMSUB	NMADD	OP-FP				
11	BRANCH	JALR	J	JAL		SYSC	ALL		

- Straightforward 32-bit instruction encoding
- Supports compressed encodings and extended-length instructions

Chisel

- Is a Hardware Construction Language
- Is not a Hardware
 Description Language:
 no un-synthesizable
 constructs
- Is type-safe and more expressive than Verilog
- Is embedded in Scala

Target Machine

Why a new ISA?

- Provide a realistic but open ISA that captures important details of commercial generalpurpose ISA designs and that is suitable for hardware implementation.
- Provide a small but complete base ISA that avoids "over-architecting" for a particular microarchitecture style or implementation technology, but which allows efficient implementation in any of these.

Chisel Backends

DEMO

- Hand written Trainwreck on FPGA & ASIC
- Chiseled Trainwreck on FPGA & ASIC