SEJITS: Productive Performance with

Electrical Engineering and
Computer Sciences

Pattern-Specific Compilation

Shoaib Kamil, Armando Fox, Bryan Catanzaro, Katherine Yelick

Selective

Py T
f0) | ho |

SEJI;I'S

Embedded
CcC IITC W

Specialize * g0

PLL Interp
|
PLL Interp

<€

v

« SEJITS is a methodology for using high-level
language capabilities to bring high performance to
productivity programmers

* more...

1. Specializer == pattern-specific compiler
* exploit pattern-specific strategies that may not
generalize
« target specific hardware per pattern
2. Can happen at runtime

3. Productivity language program always valid even

without SEJITS support
* l.e.vs. incompatibly extending syntax; inspired
by DSEL vs. DSL argument
4. Specializers can be written in Productivity
Language

« SEJITS delivers adaptive parallel software
« SEJITS is a highly productive way to produce
exactly the code variants you need

« SEJITS makes research code productive
« Exploit full libraries, tools, etc. of Productivity
Lang
* Performance competitive with Efficiency Lang
code
* Develop specializers to target new HW features
=> Test designs with real apps

: Specialization
v Q

OS/HW OS/HW

Variant Selection Code Generation

SEJITS-0 None Statically precompiled
In Efficiency Language : :
SEJITS-1 Library Statically precompiled

SEJ|TS-2 In Produthil\élrt;/rI};anguage Statically precompiled

Efficiency Language code
SEJITS-3 Single variant generated generated from Productivity
Language code

Variants in Efficiency
In Productivity Language Language code generated
SEJITS-4 Library from Productivity Language
code

SEJITS-0: Efficiency Lang library exposed to Python

SEJITS-1: Efficiency Lang code statically precompiled
w/ variant selection in Efficiency Lang code

SEJITS-2: Efficiency Lang code statically precompiled
w/ variant selection in Productivity Lang code

SEJITS-3: Efficiency Lang source generated by
translating Productivity Lang source and JIT-compiled

SEJITS-4: Multiple Efficiency Lang variants generated
from Productivity Lang source, “runtime” empirical
planning of which variant to use

Copperhead
OpenCV NumPy Ruby Stencils | | Future Copperhead
blas.py PySKI FFTW+SciPy ActiveRecord SEJITS for Python

—

SEJITS-0 SEJITS-1 SEJITS-2 SEJITS-3 SEJITS-4

- Ruby class encapsulates
SG pattern

* body of anonymous
lambda specifies filter

class LaplacianKernel < Kernel
| def kernel(in_grid, out_grid) |
" in_grid.each_interior do |point]
En_grid.neighbors(point,1).eachj

do | x|

funCtion engut_grid[point] += 0.2*x.val
- Introspection used to read end- o
AST Of fu nCtion bOdy [\5{2%25 IEern_par(int argc, VALUE* argv, VALUE]
- Code generator produces 27 1
OpenMP for multicore x86 Krsssibitmesan
[:for (t_7=1; t_7<256-1; t_7++) { 1

« ~1000-2000x faster than 5 e S hoexce st vt o
Ruby Ln. ﬂ
out_grid[center] = (out_grid[center]

P Mlnlmal per_Ca” runtlme 1 +(0.2*%in_grid[INDEX(t_6,t_7,t_8+1)1))
return Qtrue;}
overhead

» 90% of pure C performance

* Productivity programmers must specify which code
matches specializable patterns

1. Annotate functions that fit into wide, shallow
pattern

2. Encapsulate each pattern into its own OO class

» Copperhead is a SEJITS Framework for Data
Parallelism, embedded in Python

Built on data parallel prelude: map, reduce,
scan, sort, scatter, gathern,..

 Currently has a specializer for CUDA

« See Bryan Catanzaro’s poster for details & demo

@cu
(a, X, y):
[a*x1 + y1 for xi, yi in zip(X, y)]

A collection of narrow specializers, each
implemented as a Python class

» Shared infrastructure through inheritance
 AST manipulation, Code Generation, Caching,
etc.

* Work in Progress
» SDK for Specializer Writers
» Basic Specializers to test infrastructure
» Parallel Map

» Goal: Democratization of Specializer Creation

