
SEJITS Overview A SEJITS Taxonomy Two Approaches for Explicit Annotation

Producing an Answer vs. Producing Software

Example: Stencils for Ruby

Four Main Ideas

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

SEJITS: Productive Performance with
Pattern-Specific Compilation

Shoaib Kamil, Armando Fox, Bryan Catanzaro, Katherine Yelick
P A R A L L E L C O M P U T I N G L A B O R A T O R Y

.py

OS/HW

f() h()

Specializer

.c
j()

P
LL

 In
te

rp

g()

SEJITS

Productivity app!

.so

cc/ld

$

.py

OS/HW

f() h()

Specializer

.c
j()

P
LL

 In
te

rp

g()

SEJITS

Productivity app!

.so

cc/ld

$

Selective!

Embedded!

JIT!

Specialization!

•  SEJITS is a methodology for using high-level
language capabilities to bring high performance to
productivity programmers!
•  more…!

1.  Specializer == pattern-specific compiler!
•  exploit pattern-specific strategies that may not

generalize!
•  target specific hardware per pattern!

2.  Can happen at runtime !
3.  Productivity language program always valid even

without SEJITS support!
•  i.e. vs. incompatibly extending syntax; inspired

by DSEL vs. DSL argument !
4.  Specializers can be written in Productivity

Language!

•  SEJITS delivers adaptive parallel software !
•  SEJITS is a highly productive way to produce
!exactly the code variants you need!

•  SEJITS makes research code productive!
•  Exploit full libraries, tools, etc. of Productivity
Lang!
•  Performance competitive with Efficiency Lang
code !
•  Develop specializers to target new HW features  
 => Test designs with real apps!

SEJITS-0: Efficiency Lang library exposed to Python!

SEJITS-1: Efficiency Lang code statically precompiled
w/ variant selection in Efficiency Lang code!

SEJITS-2: Efficiency Lang code statically precompiled
w/ variant selection in Productivity Lang code!

SEJITS-3: Efficiency Lang source generated by
translating Productivity Lang source and JIT-compiled!

SEJITS-4: Multiple Efficiency Lang variants generated
from Productivity Lang source, “runtime” empirical
planning of which variant to use!

class LaplacianKernel < Kernel
 def kernel(in_grid, out_grid)
 in_grid.each_interior do |point|
 in_grid.neighbors(point,1).each
 do |x|
 out_grid[point] += 0.2*x.val
 end
 end
end

VALUE kern_par(int argc, VALUE* argv, VALUE
self) {
unpack_arrays into in_grid and out_grid;

#pragma omp parallel for default(shared)
private (t_6,t_7,t_8)
for (t_8=1; t_8<256-1; t_8++) {
 for (t_7=1; t_7<256-1; t_7++) {
 for (t_6=1; t_6<256-1; t_6++) {
 int center = INDEX(t_6,t_7,t_8);
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)]));
 ...
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)]));
;}}}
return Qtrue;}

•  Ruby class encapsulates
SG pattern!
•  body of anonymous

lambda specifies filter
function!

•  Introspection used to read
AST of function body!

•  Code generator produces
OpenMP for multicore x86!
•  ~1000-2000x faster than

Ruby!
• Minimal per-call runtime

overhead!
•  90% of pure C performance!

•  Productivity programmers must specify which code
matches specializable patterns!

1.  Annotate functions that fit into wide, shallow
pattern!

2.  Encapsulate each pattern into its own OO class!

Wide Patterns: Data Parallel SEJITS with Copperhead

Narrow Patterns: SEJITS with Python Classes Per-Pattern

Variant Selection! Code Generation!

SEJITS-0 None Statically precompiled

SEJITS-1 In Efficiency Language
Library

Statically precompiled

SEJITS-2 In Productivity Language
Library

Statically precompiled

SEJITS-3 Single variant generated
Efficiency Language code

generated from Productivity
Language code

SEJITS-4 In Productivity Language
Library

Variants in Efficiency
Language code generated
from Productivity Language

code

SEJITS-0! SEJITS-1! SEJITS-2! SEJITS-3!

NumPy!
PySKI! FFTW+SciPy!

Copperhead!
Ruby Stencils!
ActiveRecord!

Future Copperhead!
SEJITS for Python!

OpenCV!
blas.py!

SEJITS-4!

•  A collection of narrow specializers, each
implemented as a Python class!

•  Shared infrastructure through inheritance!
•  AST manipulation, Code Generation, Caching,
etc.!

•  Work in Progress!
•  SDK for Specializer Writers!
•  Basic Specializers to test infrastructure!
•  Parallel Map!

•  Goal: Democratization of Specializer Creation!

•  Copperhead is a SEJITS Framework for Data
Parallelism, embedded in Python!
•  !
• Built on data parallel prelude: map,	
 reduce,	

scan,	
 sort,	
 scatter,	
 gather,	
 …	

•  Currently has a specializer for CUDA!

•  See Bryan Catanzaroʼs poster for details & demo!

@cu	

def	
 saxpy(a,	
 x,	
 y):	

	
 	
 	
 return	
 [a*xi	
 +	
 yi	
 for	
 xi,	
 yi	
 in	
 zip(x,	
 y)]	

