
Cerebral Blood Flow Simulation – A SEJITS friendly framework
Meriem Ben-Salah, Chris Chaplin, Razvan Carbunescu

Motivation
 Productivity layer programming language (e.g. Python) vs. efficiency layer programming language (e.g. C++):

 5x faster development and 3-10x fewer lines of code

 BUT, 10x-100x less performance without exploring hardware model

 Scientists Productivity layer Programmers

 Computationally expensive problems and lack of computer science knowledge -> Disaster!

 In need of a technique that permits:

 high level knowledge of computer architecture abstraction

 and simultaneously good performance

 SEJITS!

 Scientists/Productivity Layer Programmer input is needed

Cerebral Blood Flow Simulation

Solution Algorithm
1. Input geometry of cerebral arteries from medical image
2. Assume an initial state of blood flow
3. Generate spatial discretization
4. March in time

1. Calculate the cell edges values AND
1. Enforce inflow boundary conditions
2. Enforce outflow boundary conditions
3. Enforce continuity at bifurcation locations

2. Combine the cell edges values
3. Update the values at cell centers

Numerics
Numerical Scheme: Finite Volume Method in space and Forward Difference in time
Complexity:

 O(10^6) time steps, each time step is 10 microseconds long.
 Maximal time: ~ 5 to 10 seconds
 O(10^4) grid points, spatial grid size is 0.1 millimeter
 Total length of vasculature: 1- 1.5 meter
 O(160) Gigaflops
 Time alloted: 30 seconds
 Gigafloprate: 240 Gigaflos/second

Theoretical Background: Physics

One dimensional physics on three dimensional geometry
System of PDEs: 1. Conservation of Mass , 2. Conservation of Momentum (+) Constitutive model

Blood

• Incompressible

• Inviscid

Interaction

• Resistance-
Compliance
Model

Vessel

• Elastic

• Thin Walled

• Isotropic
Unknow

ns

Pressure

Velocity

Cross
section
Areas

Structural Patterns:

• Pipe & Filter

• Agent & Repository

• Process Control

• Event-Based/Implicit
Invocation

• Puppeteer

• Model-View-Controller

• Iterative Refinement

• Map-Reduce

• Layered Systems

• Arbitrary Static Task Graph

Computational
Patterns:

• Graph-Algorithms

• Dynamic Programming

• Dense Linear Algebra

• Sparse Linear Algebra

• Unstructured Grids

• Structured Grids

• Graphical Methods

• Finite State Machines

• Backtrack-Branch-Bound

• N-Body-Methods

• Circuits

• Spectral Methods

• Monte Carlo

Parallel Algorithm
Pattern:

• Task-Parallelism

• Divide and Conquer

• Data-Parallelism

• Pipeline

• Discrete-Event

• Geometric-Decomposition

• Speculation

Implementation
Pattern:

• Program:

• SPMD

• Fork/Join

• Loop-Parallel

• Task-Queue

• Data-Parallel

• Actors

• Data:

• Shared-Queue

• Shared Map

• Partitioned Graph

• Distributed Array

• Shared Data

Execution Pattern:

• MIMD

• SIMD

• Thread-Pool

• Task-Graph

• Transactions

Handled by
Stovepipes

Design Space

SEJITS--Selective Embedded Just In Time Specialization
Libraries are written in Low Level Programming Languages and are too specific
Stick with a High Level Programming Language e.g. Python
Hidden to the productivity layer programmer but good to know:

Computational Patterns (good for reuse) are selected (if it is worth it) and specialized at runtime
A specialized function is written in a low level language targeted to the “parallel” hardware architecture (so called stovepipe technique)
Use of Autotuning techniques (e.g. in Pyski, autotuned Linear Algebra methods embedded in Python)
The low level code is compiled at run time
The low level code is dynamically linked using the high level language interpreter

 Explore the SEJITS technique by means of a real application
and define what the needs are?

 Personalized Medicine Application: Simulation of the blood
flow in the main cerebral arteries (the Circle of Willis) based
on patient data (CT scan, ultrasound) to save costs and save
lives of stroke patients.

Hints from the Productivity Layer Programmer
Do we need to approach programming differently?

Use of functional programming techniques to give hints about specialization: map, filter, reduce

Use semantics to give hints about specific computational and structural patterns, e.g. use of stencil operation or sparse matrix vector multiplication SpMV.

Requirements from a Productivity Layer Perspective
Language Requirements: easy and familiar
Composition: hierarchical composition of patterns to build frameworks, integration of legacy code
Compilation: transparent conversion of data
Quality of Service: real time service, best performance

Conclusion
Hardware and implementation techniques are changing every day.
Domain experts do not need to dive into detail into the computer science world.
SEJITS will hopefully save lives of the productivity masses:

high level programming
performance (implicit use of new computer technologies)
Same program on all platforms: cluster, cloud, multicore etc.

Input of productivity programmers is essential for success/applicability of this technology.

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227).

Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems.

Conctacts: Meriem Ben-Salah bensalah@me.berkeley.edu, Chris Chaplin cmchap@berkeley.edu

 Razvan Carbunescu carazvan@eecs.berkeley.edu

Implementation
Separate prototyping in MATLAB for the verification of the correctness & stability of the numerical algorithm.
MATLAB is a high level scripting language but has weak glue facilities.
 Implement algorithm in Python using data types and linear algebra operations that are intrinsic to NumPy (for now).
Invoke calls/prospection by PySki and by SEJITS specialization

mailto:bensalah@me.berkeley.edu
mailto:cmchap@berkeley.edu
mailto:carazvan@eecs.berkeley.edu

