
PreFail: Programmable and Efficient

Pallavi Joshi, Haryadi S. Gunawi, Koushik Sen
UC Berkeley

Motivation
• Large scale distributed systems face
frequent, multiple, and diverse hardware
failures
• Recovery protocols are often buggy
• Most of the previous work on failure testing
focuses on single failures
• For multiple failures, brute force has to
explore huge (e.g. >40,000) number of
failure scenarios
• Thus new challenge: combinatorial
explosion of multiple failures

Failure Testing

 Node A Node B
 L1. write(B, msg) L1. write(A, msg)
 L2. read(B, header) L2. read(A, header)
 L3. read(B, body) L3. read(A, body)
 L4. write(B, msg) L4. write(A, msg)
 L5. write(Disk, buf) L5. write(Disk, buf)

Example Program

Failure ID (FID)
I/O ID Fields  Values 

Sta$c  func  write() 
src loc  Write.java (line L1) 

Dynamic  node  A 
target  B 
stack  (the stack trace) 

Domain Specific  network msg.  “Heartbeat Msg” 
Failure ID = hash (I/O ID + Crash) = 2849067135 

• Testers write policies to indicate the
subset of failure space to explore
• Policies can be of varying complexities
• Policies can help achieve different
coverage criteria
– code coverage, recovery coverage

Programmable Failure Testing

!

!"#$"

#

%&'()(*$

!$% &

! %

!

%

$ '

'

!$

!$

"()*+,-./0/12 #()*+,-./30/12

!' %'

'!%

4

5'!%

666

666

+,-.
/*0$

Policies

• Filter policy
– Express which failure
sequences to exercise

• Cluster policy
– Express the equivalence of
two failure sequences
– Only one failure sequence
from an equivalence class
is exercised

 def filter (fSeq):
 l = len(fSeq)
 last = fSeq [l– 1]
 b = explored (last.loc)
 return not b

Code Coverage

Recovery Coverage
 def eqv (seq1, seq2):
 rPath1 = recoveryPath (seq1)
 rPath2 = recoveryPath (seq2)
 return rPath1 == rPath2

 def recoveryPath(fSeq):
 a = allFids (fSeq)
 r = reducedFids (a, [`loc’])
 a0 = allFids ([])
 r0 = reducedFids (a0, [`loc’])
 rPath = r – r0
 return rPath

Failure Testing Framework

 def cluster (fSeq1, fSeq2):
 l1 = len(fSeq1)
 l2 = len(fSeq2)
 last1 = fSeq1 [l1– 1]
 last2 = fSeq2 [l2– 1]
 b = (last1.loc == last2.loc)
 return b

Efficient Failure Testing
Optimizations

• Crashes before writes
• Read failures/corruption on
first reads
• No crashes/network
failures for dead nodes

Parallelization
• Experiments with failure sequences
of a particular length i are
distributed across m machines

Triaging
• Cluster according to
root cause (bug)
• Sort according to
bug type

Evaluation

• Target systems : HDFS,
Zookeeper, Cassandra
• 6 new, 16 old bugs found
– data loss, unavailability

• Reduction of experiments
with
– policies: 1 to 3 orders of
magnitude
– optimizations: 5 times
(average)

0

500

1000

1500

2000

2500

3000

3500

4000

Write Append Reboot Write (old)

Testing workflow

