
BERKELEY PAR LABBERKELEY PAR LAB

PySKI:
THE PYTHON SPARSE KERNEL

INTERFACE

Erin Carson

Ben Carpenter

Armando Fox

James Demmel

BERKELEY PAR LAB

Efficiency vs. Productivity

 Efficiency: Low-level Auto-tuning libraries, such as OSKI,

enable better performance for scientific computations

 Complex matrix tuning optimizations

 C code enables near peak performance

 Hard to write

 Productivity: Higher level languages, such as Python,

enable faster/better code development

 2-5x faster development (P. Hudak and M. P. Jones, 1994)

 Less efficiency

 Can we combine the benefits of both?

2

BERKELEY PAR LAB

Background: The Need for Auto-tuning

3

“Needle in a haystack”: 2-by-3

tile size fastest

Mflops/s for Various Block Sizes in MatMul Operation

BERKELEY PAR LAB

OSKI: Optimized Sparse Kernel Interface

 C Library used in solver libraries

 BLAS-style interface

 SpMV, SpTS, etc.

 Automatically tuned computational kernels on sparse matrices

 Optimal tuning choices are often non-obvious

 3 Types of Tuning

 Install-time tuning (based on system)

 Implicit run-time tuning (performance monitoring)

 Explicit run-time tuning (workload hints)

4

BERKELEY PAR LAB
How OSKI Tunes (Overview)

5

Benchmark

data

1. Build for

Target

Arch.

2. Benchmark

Heuristic

models

1. Evaluate

Models

Generated

code

variants

2. Select

Data Struct.

& Code

Library Install-Time (offline) Application Run-Time

To user:
Matrix handle

for kernel

calls

Workload

from program

monitoring

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.

History

Matrix

BERKELEY PAR LAB
Example: Tuning with Explicit Hints

6

oski_matrix_t A_tunable = oski_CreateMatCSR(…);

/* Tell OSKI we will call SpMV 500 times (explicit workload hint) */

oski_SetHintMatMult(A_tunable, OP_NORMAL, , x_view, , y_view, 500);

/* Tell OSKI we think the matrix has 8x8 blocks (structural hint) */

oski_SetHint(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);

/* Ask OSKI to tune */

oski_TuneMat(A_tunable);

for(i = 0; i < 500; i++)

oski_MatMult(A_tunable, OP_NORMAL, , x_view, , y_view);

BERKELEY PAR LABPySKI Motivation

 Can we enable users to both write code productively and achieve

speedups from auto-tuning?

 Currently: C/OSKI requires the user to mix tuning and computation

code – Not productive

 When to change representation of a matrix?

 When to do expensive "unmarshal" of a representation?

 When to tune and re-tune?

• Setting explicit tuning hints

7

BERKELEY PAR LAB

PySKI Goal: Hiding Efficiency Code

 Provide Python bindings for OSKI via scipy.sparse

 A python sparse matrix package with some overlap with OSKI

 OSKI maintains data structures plus "shadow" data structures for tuning

 Abstract datatypes wrap pointers to these structures

 Expose higher-level abstract datatypes & methods to

productivity programmer

 low-level OSKI objects become transparent to mainline

computation

 Idea: separate tuning hints from main source code

 changes to policy don't contaminate source

 policy experimentation can proceed in parallel

 Enables performance portability

8

BERKELEY PAR LAB

USER PROGRAM: PYTHON

import scipy.sparse

A = csr_matrix()

b = array()

C = A*b

Example: Matrix Multiply

9

SCIPY SOURCE CODE

@check_OSKI

def _mul_(*args)

perform matmul

DECORATOR CODE

def check_OSKI(*args)

if OSKI is installed:

if check_for_hint():

set_hints()

tune_mats()

call OSKI SpMV

gather profiling data

else:

fall through to

scipy matmul code

BERKELEY PAR LAB
Challenges: Identification of Call Site

 Need to know when and where to associate tuning

hints

 Questions

 How much (if any) information should the user specify?

 How can we keep track of this information?

10

Matrix A1, A2

Vector v

GMRES(A1,v)

GMRES(A2,v)

Change nonzero entries of A1

GMRES(A1,v)

@tune_function

def GMRES(Matrix A, Vector v):

SPMV(A,v)

TSQR(v)

How does PySKI

know which tuned

SPMV and TSQR to

use? What if co-

tuning is required?

BERKELEY PAR LAB

Challenges: Handling History

History, or profiling data, can be useful in future

tuning operations

How much history should we keep?

 From this execution?

• Currently in OSKI, along with load/save transformation

methods

 Across multiple runs?

 Future: maintain tuning databases

11

BERKELEY PAR LAB
The Big Picture

.py

OS/HW

f()

g() j()

h()
.c

.so

perf.

counters

$

P
L
L
 I

n
te

rp

SEJITS

Productivity app

tuned

.so

Hist-

ory

In
s
ta

ll-
ti
m

e

a
u

to
tu

n
in

g

cc/ld

.c.c.c

Specializer

BERKELEY PAR LAB

BACKUP SLIDES

13

BERKELEY PAR LABSummary of Performance Optimizations

 Optimizations for SpMV

 Register blocking (RB): up to 4x over CSR

 Variable block splitting: 2.1x over CSR, 1.8x over RB

 Diagonals: 2x over CSR

 Reordering to create dense structure + splitting: 2x over CSR

 Symmetry: 2.8x over CSR, 2.6x over RB

 Cache blocking: 2.8x over CSR

 Multiple vectors (SpMM): 7x over CSR

 And combinations…

 Sparse triangular solve

 Hybrid sparse/dense data structure: 1.8x over CSR

 Higher-level kernels

 A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB

 A2·x: 2x over CSR, 1.5x over RB

 [A·x, A2·x, A3·x, .. , Ak·x]

14

BERKELEY PAR LAB

Measured Speedups

 Preliminary results: 2x speedup over Python for

~1000x1000 matrices
 Need to test larger sizes, where matrix does not fit in cache

15

BERKELEY PAR LAB

Productivity Citation

 P. Hudak and M. P. Jones. Haskell vs. Ada vs. C++ vs. Awk vs...an

experiment in software prototyping productivity. Technical Report

YALEU/DCS/RR-1049, Yale University Department of Computer

Science, New Haven, CT, 1994.

 80 implementations of same set of requirements were attempted by

74 different programmers. task was to see if a given phone number

spells anything interesting, given access to a dictionary of legal

words. programmers self-reported their development time. PLL

programmers (Perl, Tcl, Python, Rexx) took anywhere from 2x-5x

quicker to develop than ELL programmers (C, C++, Java). roughly,

the "number of LOC per hour" is stable across all languages, except

that for C/C++ the ratio is superlinear (ie, a C/C++ program that is

twice as many LOC takes more than twice as long to produce), yet

scripting languages do more work per LOC.

16

BERKELEY PAR LAB

The Big Picture

17

runtime/OS/HW

code
cache

Call decorated
function

Static-
ally

auto-
tuned?

app.
py

Specia
lizer?

.so .so

Select data
structures

& code
variant

tuning
hints

hist-
ory

static
bench-
marks

Code
gen/compil

e

counters,
call history

PLL
interp

install-time
autotuning

BERKELEY PAR LAB

18

.py

OS/HW

f()

g() j()

h()
.c

.so

perf.

counters

$

P
L
L
 I

n
te

rp

SEJITS

Productivity app

tuned

.so

Hist-

ory

In
s
ta

ll-
ti
m

e

a
u

to
tu

n
in

g

cc/ld

.c.c.c

Specializer

