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Efficiency vs. Productivity

 Efficiency: Low-level Auto-tuning libraries, such as OSKI, 

enable better performance for scientific computations

 Complex matrix tuning optimizations

 C code enables near peak performance

 Hard to write

 Productivity: Higher level languages, such as Python, 

enable faster/better code development

 2-5x faster development (P. Hudak and M. P. Jones, 1994) 

 Less efficiency

 Can we combine the benefits of both?
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Background: The Need for Auto-tuning
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“Needle in a haystack”: 2-by-3 

tile size fastest

Mflops/s for Various Block Sizes in MatMul Operation
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OSKI: Optimized Sparse Kernel Interface

 C Library used in solver libraries

 BLAS-style interface

 SpMV, SpTS, etc. 

 Automatically tuned computational kernels on sparse matrices

 Optimal tuning choices are often non-obvious

 3 Types of Tuning

 Install-time tuning (based on system)

 Implicit run-time tuning (performance monitoring)

 Explicit run-time tuning (workload hints)
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How OSKI Tunes (Overview)
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Example: Tuning with Explicit Hints

6

oski_matrix_t A_tunable = oski_CreateMatCSR( … );

/* Tell OSKI we will call SpMV 500 times (explicit workload hint) */

oski_SetHintMatMult(A_tunable, OP_NORMAL, , x_view, , y_view, 500);

/* Tell OSKI we think the matrix has 8x8 blocks (structural hint) */

oski_SetHint(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);

/* Ask OSKI to tune */

oski_TuneMat(A_tunable); 

for( i = 0; i < 500; i++ )

oski_MatMult(A_tunable, OP_NORMAL, , x_view, , y_view);
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 Can we enable users to both write code productively and achieve 

speedups from auto-tuning?

 Currently: C/OSKI requires the user to mix tuning and computation 

code – Not productive

 When to change representation of a matrix?

 When to do expensive "unmarshal" of a representation?

 When to tune and re-tune?

• Setting explicit tuning hints
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PySKI Goal: Hiding Efficiency Code 

 Provide Python bindings for OSKI via scipy.sparse

 A python sparse matrix package with some overlap with OSKI

 OSKI maintains data structures plus "shadow" data structures for tuning

 Abstract datatypes wrap pointers to these structures

 Expose higher-level abstract datatypes & methods to 

productivity programmer

 low-level OSKI objects become transparent to mainline 

computation

 Idea: separate tuning hints from main source code

 changes to policy don't contaminate source

 policy experimentation can proceed in parallel

 Enables performance portability
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USER PROGRAM: PYTHON

import scipy.sparse

A = csr_matrix()

b = array()

C = A*b

Example: Matrix Multiply
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SCIPY SOURCE CODE

@check_OSKI

def _mul_(*args)

perform matmul

DECORATOR CODE

def check_OSKI(*args)

if OSKI is installed:

if check_for_hint():

set_hints()

tune_mats()

call OSKI SpMV

gather profiling data

else:

fall through to                        

scipy matmul code



BERKELEY PAR LAB
Challenges: Identification of Call Site

 Need to know when and where to associate tuning 

hints 

 Questions

 How much (if any) information should the user specify?

 How can we keep track of this information?
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Matrix A1, A2

Vector v

GMRES(A1,v)

GMRES(A2,v)

Change nonzero entries of A1

GMRES(A1,v)

@tune_function

def GMRES(Matrix A, Vector v):

SPMV(A,v)

TSQR(v)

How does PySKI

know which tuned 

SPMV and TSQR to 

use? What if co-

tuning is required?
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Challenges: Handling History

History, or profiling data, can be useful in future 

tuning operations

How much history should we keep?

 From this execution?

• Currently in OSKI, along with load/save transformation 

methods

 Across multiple runs?

 Future: maintain tuning databases
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The Big Picture
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BACKUP SLIDES
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 Optimizations for SpMV

 Register blocking (RB): up to 4x over CSR

 Variable block splitting: 2.1x over CSR, 1.8x over RB

 Diagonals: 2x over CSR

 Reordering to create dense structure + splitting: 2x over CSR

 Symmetry: 2.8x over CSR, 2.6x over RB

 Cache blocking: 2.8x over CSR

 Multiple vectors (SpMM): 7x over CSR

 And combinations…

 Sparse triangular solve

 Hybrid sparse/dense data structure: 1.8x over CSR

 Higher-level kernels

 A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB

 A2·x: 2x over CSR, 1.5x over RB

 [A·x, A2·x, A3·x, .. , Ak·x] 
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Measured Speedups

 Preliminary results: 2x speedup over Python for 

~1000x1000 matrices
 Need to test larger sizes, where matrix does not fit in cache
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Productivity Citation

 P. Hudak and M. P. Jones. Haskell vs. Ada vs. C++ vs. Awk vs...an 

experiment in software prototyping productivity. Technical Report 

YALEU/DCS/RR-1049, Yale University Department of Computer 

Science, New Haven, CT, 1994.

 80 implementations of same set of requirements were attempted by 

74 different programmers. task was to see if a given phone number 

spells anything interesting, given access to a dictionary of legal 

words. programmers self-reported their development time. PLL 

programmers (Perl, Tcl, Python, Rexx) took anywhere from 2x-5x 

quicker to develop than ELL programmers (C, C++, Java). roughly, 

the "number of LOC per hour" is stable across all languages, except 

that for C/C++ the ratio is superlinear (ie, a C/C++ program that is 

twice as many LOC takes more than twice as long to produce), yet 

scripting languages do more work per LOC.
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The Big Picture
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