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RAMP Gold : A Parlab manycore emulator 

 Leverage RAMP FPGA emulation 
infrastructure to build prototypes of 
proposed architectural features 

 Fast enough to run real apps 

 “tapeout” everyday  

 RAMP Gold 

 Single-socket tiled manycore target 
 SPARC v8 -> ISA neutural 

 Shared memory, distributed coherent cache 

 Multiple on-chip networks and memory 
channels 

 Split functional/timing model, both in 
hardware 

 Host multithreading of both functional 
and timing models 
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Host multithreading 
 Single hardware pipeline with multiple copies of CPU state 

 Virtualized the pipeline with fine-grained multithreading to 
emulate more target CPUs with high efficiency (i.e. MIPS/FPGA) 

 Hide emulation latencies 

 Not multithreading target 
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Balancing Func. And Timing Models  
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RAMP Gold Implementation 
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Xilinx ML505 

BEE3 

 Single FPGA Implementation  

 Low cost Xilinx ML505 board  

 64~128 cores, 2GB DDR2, FP, 
timing model, 100~130 MIPS  

 A 64-core functional model demo 

 Multi-FPGA Implementation  

 BEE3 : 4 Xilinx Virtex 5 LX155T 

 1K~2K cores, 64GB DDR2, FP, 
timing model  
 Higher emulation capacity and memory 

bandwidth 



RAMP Gold Prototyping 
 Version 1 

 Single FPGA implementation on Xilinx ML505 

 64~128 cores, integer only, 2G byte memory, running 
at 100 MHz 

 Simple timing model  

 Single in-order issue CPU with an ideal shared memory (2-
cycle access latency) 

 RAMP performance counter support 

 Full verification environment 
 Software simulator (C-gold) 

 RTL/netlist verification  

 HW on-chip verification 

 BSD license : Everything is built from scratch! 
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CPU Functional Model (1) 

 64 HW threads, full 32-bit SPARC v8 CPU 

 The same binary runs on both SUN boxes and RAMP 

 Optimized for emulation throughput (MIPS/FPGA) 

 1 cycle access latency for most of the instructions on host 

 Microcode operation for complex and new instructions 

 E.g. trap, active messages 

 

 Design for FPGA fabric for optimal performance 

 “Deep” pipeline : 11 physical stages, no bypassing network 

 DSP based ALU 

 ECC/parity protected RAM/cache lines and etc. 

 Double clocked BRAM/LUTRAM  

 Fine-tuned FPGA resource mapping 
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CPU Functional Model (2) 

 Status 

 Coded in Systemverilog 

 Passed the verification suite donated by SPARC International 

 Verified against our C functional simulator 

 Mapped and tested on HW @ 100 MHz  

 Maximum frequency > 130 MHz 

 

 FPGA resource consumption (XCV5LX50T) 

 1 CPU + SRAM controller + memory network 
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Verification/Testing Flow 
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GCC Toolchain 
 SPARC cross compiler with newlib 

 Built with (binutils-2.18, gcc-4.3.2/gmp-4.3.2/mpfr-2.3.2, newlib-
1.16.0) 

 sparc-elf-{gcc, g++, ld, nm, objdump, ranlib, strip, …} 

 

 Link newlib statically 

 newlib is a C library intended for use on embedded systems 

 C functions in newlib are narrowed down to 19 system calls 

 _exit, close, environ, execve, fork, fstat, getpid, isatty, kill, 
link, lseek, open, read, sbrk, stat, times, unlink, wait, write 

 

 Now we can compile our C, C++ source code (w/ 
standard C functions) to a SPARC executable 

 sparc-elf-gcc –o hello hello.c –lc –lsys –mcpu=v8  
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Frontend Machine 

 Multiple backends 

 C-gold functional simulator (link: function calls) 

 Modelsim simulator (link: DPI) 

 Actual H/W (Xilinx ML505, BEE3) (link: gigabit ethernet) 

 

 Narrow interface to support a new backend 

 Host/Target interface 

 CPU reset 

 Memory interface 

 {read,write}_{signed,unsigned}_{8,16,32,64} 

 

 Execute system calls received from the backend 

 Signaled by the backend proxy kernel 

 Map a Solaris system call to a Linux system call and execute 
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Proxy Kernel 
 How could we support I/Os? 

 The target doesn’t have any peripherals (e.g. disks) 

 It would be a pain to program a system which can’t read or 
write to anything… 

 It would be more pain to make the peripherals work with the 
actual H/W 

 

 A minimal kernel which acts as a proxy for system calls 
invoked by newlib 

 Proxy kernel sends the arguments and the system call number 
to the frontend machine 

 The frontend machine does the actual system call and returns 
the results back to the proxy kernel 

 Finally the PC is moved back to the application and everybody is 
happy 
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C-gold Functional Simulator 

 Baseline functional model to verify our functional model 
written in system verilog 

 Full 32-bit SPARC v8 

 Includes an IEEE 754 compatible FPU 

 New instruction introduced to support active messages 

 SENDAM 

 

 Written from scratch, no junk in it 

 Very fast, ~25 MIPS 

 Easy to understand 

 Easy to add/modify modules for experiments 

 Flexible parameters (Number of target threads, host threads, …) 
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On the fly DEMO 
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Plans for the Next Version 

 Try out several research projects 

 Performance Counter 

 Virtual Local Stores 

 

 Enhance the functional model and timing model 

 Add FPUs 

 Memory/cache timing models 
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Pipeline Architecture 
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 Single issue in order pipeline (integer 
only) 
 11 pipeline stages (no forwarding) -> 7 

logical stages 

 Static thread scheduling, zero overhead 
context switch 

 Avoid complex operations with “microcode” 

 E.g. traps, ST 

 32-bit I/O bus (threaded) with interrupt 
support 

 

 Physical implementation 
 All BRAM/LUTRAM/DSP blocks in double 

clocked or DDR mode 

 Manually-controlled BRAM mapping 

 LUTRAM mapping by memory compiler 

 Extra pipeline stages for routing 

 ECC/Parity protected BRAMs 

 Deep submicron effect on FPGAs 



Implementation Challenges 
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 CPU state storage 

 Where?   

 How large? Does it fit on FPGA? 

 Minimize FPGA resource consumption 

 E.g. Mapping ALU to DSPs 

 Host cache & TLB 

 Need cache? 

 Architecture and capacity 

 Bandwidth requirement and R/W access ports  

 host multithreading amplifies the requirement 



State storage 
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 Complete 32-bit SPARC v8 ISA w. traps/exceptions 

 All CPU states (integer only) are stored in SRAMs on FPGA 

 Per context register file -- BRAM 

 3 register windows stored in BRAM chunks of 64 

 8 (global) + 3*16 (reg window) = 54 

 6 special registers 

 pc/npc -- LUTRAM 

 PSR (Processor state register) -- LUTRAM 

 WIM (Register Window Mask) -- LUTRAM 

 Y (High 32-bit result for MUL/DIV) -- LUTRAM 

 TBR (Trap based registers) --  BRAM (packed with regfile) 

 Buffers for host multithreading (LUTRAM) 

 Maximum 64 threads per pipeline on Xilinx Virtex5 

 Bounded by LUTRAM depth (6-input LUTs) 

 



Mapping SPARC ALU to DSP 
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 Xilinx DSP48E advantage 

 48-bit add/sub/logic/mux + pattern detector 

 Easy to generate ALU flags: < 10 LUTs for C, O 

 Pipelined access over 500 MHz 

 



DSP advantage 

25 

 Instruction coverage (two double clocked DSPs / pipeline) 

 1 cycle ALU (1 DSP) 

 LD/ST (address calculation) 

 Bit-wise logic (and, or, …) 

 SETHI (value by pass) 

 JMPL, RETT, CALL (address calculation) 

 SAVE/RESTORE (add/sub) 

 WRPSR, RDPSR, RDWIM (XOR op) 

 Long latency ALU instructions (1 DSP) 

 Shift/MUL (2 cycles)  

 

 5%~10% logic save for 32-bit data path 

 

 



Host Cache/TLB 
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 Accelerating emulation performance! 
 Need separate model for target cache 

 

 Per thread cache (Partitioned) 
 Split I/D direct-map write-allocate write-back cache 

 Block size: 32 bytes (BEE3 DDR2 controller heart beat) 

 64-thread configuration: 256B I$, 256B D$ 

 Size doubled in 32-thread configuration 

 Non-blocking cache, 64 outstanding requests (max) 

 Physical tags, indexed by virtual or physical address 

 $ size < page size 

 67% BRAM usage  

 

 Per thread TLB 
 Split I/D direct-map TLB: 8 entries ITLB, 8 entries DTLB 

 Dummy currently  

 Static translation for Solaris virtual address layout 



Cache-Memory Architecture 
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 Cache controller 
 Non-blocking pipelined access (3-stages) matches CPU pipeline 
 Decoupled access/refill: allow pipelined, OOO mem accesses 
 Tell the pipeline to “replay” inst. on miss 
 128-bit refill/write back data path  

 fill one block at 2x clk rate 

RAMB18SDP RAMB36SDP (x72) RAMB36SDP (x72) RAMB36SDP (x72) RAMB36SDP (x72)
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Example: A distributed memory non-cache coherent system 
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 Eight multithreaded SPARC v8 pipelines in 
two clusters 
 Each thread emulates one independent node 

in target system 
 512 nodes/FPGA 
 Predicted emulation performance:  

 ~1 GIPS/FPGA (10% I$ miss, 30% D$ 
miss, 30% LD/ST) 

 x2 compared to naïve manycore 
implementation 

 

 Memory subsystem 
 Total memory capacity 16 GB, 32MB/node 

(512 nodes) 
 One DDR2 memory controller per cluster 
 Per FPGA bandwidth: 7.2 GB/s  
 Memory space is partitioned to emulate 

distributed memory system 
 144-bit wide credit-based memory network 

 

 Inter-node communication (under 
development) 
 Two-level tree network  with DMA to provide 

all-to-all communication 



Project Status 
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 Done with RTL implementation 

 ~12,000 lines synthesizable Systemverilog code 

 FPGA resource utilization per pipeline on Xilinx V5 LX110T 

 ~4% logic (LUT), ~10% BRAM 

 Max 10 pipelines, but back off to 8 or less 

 

 Built RTL verification infrastructure 

 SPARC v8 certification test suite (donated by SPARC 
international) + Systemverilog 

 Can be used to run more programs but very slow  

(~0.3 KIPS) 

 

 

 

 



Project Status 
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 Passed all SPARC v8 integer diagnostics in pre-
synthesized RTL simulation 

 Run single threaded Solaris apps (5 syscall supported so 
far) 

 Working on HW verification after synthesis and P&R 

 Synthesized with an alpha version of Synplify 

 Will support MentorGraphics Precision 2008a Update 
2 in late Nov 

 

 Planned Release in Jan 09 

 64/128 emulated CPUs on Xilinx ML505 board @ 
$500 + 2GB DDR2 DRAM cost 

 Source code will be available under BSD license 



Thank you 
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