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RAMP Gold : A Parlab manycore emulator 

 Leverage RAMP FPGA emulation 
infrastructure to build prototypes of 
proposed architectural features 

 Fast enough to run real apps 

 “tapeout” everyday  

 RAMP Gold 

 Single-socket tiled manycore target 
 SPARC v8 -> ISA neutural 

 Shared memory, distributed coherent cache 

 Multiple on-chip networks and memory 
channels 

 Split functional/timing model, both in 
hardware 

 Host multithreading of both functional 
and timing models 
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Host multithreading 
 Single hardware pipeline with multiple copies of CPU state 

 Virtualized the pipeline with fine-grained multithreading to 
emulate more target CPUs with high efficiency (i.e. MIPS/FPGA) 

 Hide emulation latencies 

 Not multithreading target 
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Balancing Func. And Timing Models  
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 Single functional model supports multiple timing models 
on FPGAs 



RAMP Gold Implementation 
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Xilinx ML505 

BEE3 

 Single FPGA Implementation  

 Low cost Xilinx ML505 board  

 64~128 cores, 2GB DDR2, FP, 
timing model, 100~130 MIPS  

 A 64-core functional model demo 

 Multi-FPGA Implementation  

 BEE3 : 4 Xilinx Virtex 5 LX155T 

 1K~2K cores, 64GB DDR2, FP, 
timing model  
 Higher emulation capacity and memory 

bandwidth 



RAMP Gold Prototyping 
 Version 1 

 Single FPGA implementation on Xilinx ML505 

 64~128 cores, integer only, 2G byte memory, running 
at 100 MHz 

 Simple timing model  

 Single in-order issue CPU with an ideal shared memory (2-
cycle access latency) 

 RAMP performance counter support 

 Full verification environment 
 Software simulator (C-gold) 

 RTL/netlist verification  

 HW on-chip verification 

 BSD license : Everything is built from scratch! 
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CPU Functional Model (1) 

 64 HW threads, full 32-bit SPARC v8 CPU 

 The same binary runs on both SUN boxes and RAMP 

 Optimized for emulation throughput (MIPS/FPGA) 

 1 cycle access latency for most of the instructions on host 

 Microcode operation for complex and new instructions 

 E.g. trap, active messages 

 

 Design for FPGA fabric for optimal performance 

 “Deep” pipeline : 11 physical stages, no bypassing network 

 DSP based ALU 

 ECC/parity protected RAM/cache lines and etc. 

 Double clocked BRAM/LUTRAM  

 Fine-tuned FPGA resource mapping 
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CPU Functional Model (2) 

 Status 

 Coded in Systemverilog 

 Passed the verification suite donated by SPARC International 

 Verified against our C functional simulator 

 Mapped and tested on HW @ 100 MHz  

 Maximum frequency > 130 MHz 

 

 FPGA resource consumption (XCV5LX50T) 

 1 CPU + SRAM controller + memory network 
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Verification/Testing Flow 
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GCC Toolchain 
 SPARC cross compiler with newlib 

 Built with (binutils-2.18, gcc-4.3.2/gmp-4.3.2/mpfr-2.3.2, newlib-
1.16.0) 

 sparc-elf-{gcc, g++, ld, nm, objdump, ranlib, strip, …} 

 

 Link newlib statically 

 newlib is a C library intended for use on embedded systems 

 C functions in newlib are narrowed down to 19 system calls 

 _exit, close, environ, execve, fork, fstat, getpid, isatty, kill, 
link, lseek, open, read, sbrk, stat, times, unlink, wait, write 

 

 Now we can compile our C, C++ source code (w/ 
standard C functions) to a SPARC executable 

 sparc-elf-gcc –o hello hello.c –lc –lsys –mcpu=v8  
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Frontend Machine 

 Multiple backends 

 C-gold functional simulator (link: function calls) 

 Modelsim simulator (link: DPI) 

 Actual H/W (Xilinx ML505, BEE3) (link: gigabit ethernet) 

 

 Narrow interface to support a new backend 

 Host/Target interface 

 CPU reset 

 Memory interface 

 {read,write}_{signed,unsigned}_{8,16,32,64} 

 

 Execute system calls received from the backend 

 Signaled by the backend proxy kernel 

 Map a Solaris system call to a Linux system call and execute 
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Proxy Kernel 
 How could we support I/Os? 

 The target doesn’t have any peripherals (e.g. disks) 

 It would be a pain to program a system which can’t read or 
write to anything… 

 It would be more pain to make the peripherals work with the 
actual H/W 

 

 A minimal kernel which acts as a proxy for system calls 
invoked by newlib 

 Proxy kernel sends the arguments and the system call number 
to the frontend machine 

 The frontend machine does the actual system call and returns 
the results back to the proxy kernel 

 Finally the PC is moved back to the application and everybody is 
happy 

14 



C-gold Functional Simulator 

 Baseline functional model to verify our functional model 
written in system verilog 

 Full 32-bit SPARC v8 

 Includes an IEEE 754 compatible FPU 

 New instruction introduced to support active messages 

 SENDAM 

 

 Written from scratch, no junk in it 

 Very fast, ~25 MIPS 

 Easy to understand 

 Easy to add/modify modules for experiments 

 Flexible parameters (Number of target threads, host threads, …) 
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On the fly DEMO 
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Plans for the Next Version 

 Try out several research projects 

 Performance Counter 

 Virtual Local Stores 

 

 Enhance the functional model and timing model 

 Add FPUs 

 Memory/cache timing models 

 

18 



Acknowledgement 

Special thanks to Prof. Kurt 
Keutzer for help from Synopsys! 

19 



Backup Slides 

20 



Pipeline Architecture 
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 Single issue in order pipeline (integer 
only) 
 11 pipeline stages (no forwarding) -> 7 

logical stages 

 Static thread scheduling, zero overhead 
context switch 

 Avoid complex operations with “microcode” 

 E.g. traps, ST 

 32-bit I/O bus (threaded) with interrupt 
support 

 

 Physical implementation 
 All BRAM/LUTRAM/DSP blocks in double 

clocked or DDR mode 

 Manually-controlled BRAM mapping 

 LUTRAM mapping by memory compiler 

 Extra pipeline stages for routing 

 ECC/Parity protected BRAMs 

 Deep submicron effect on FPGAs 



Implementation Challenges 
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 CPU state storage 

 Where?   

 How large? Does it fit on FPGA? 

 Minimize FPGA resource consumption 

 E.g. Mapping ALU to DSPs 

 Host cache & TLB 

 Need cache? 

 Architecture and capacity 

 Bandwidth requirement and R/W access ports  

 host multithreading amplifies the requirement 



State storage 
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 Complete 32-bit SPARC v8 ISA w. traps/exceptions 

 All CPU states (integer only) are stored in SRAMs on FPGA 

 Per context register file -- BRAM 

 3 register windows stored in BRAM chunks of 64 

 8 (global) + 3*16 (reg window) = 54 

 6 special registers 

 pc/npc -- LUTRAM 

 PSR (Processor state register) -- LUTRAM 

 WIM (Register Window Mask) -- LUTRAM 

 Y (High 32-bit result for MUL/DIV) -- LUTRAM 

 TBR (Trap based registers) --  BRAM (packed with regfile) 

 Buffers for host multithreading (LUTRAM) 

 Maximum 64 threads per pipeline on Xilinx Virtex5 

 Bounded by LUTRAM depth (6-input LUTs) 

 



Mapping SPARC ALU to DSP 
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 Xilinx DSP48E advantage 

 48-bit add/sub/logic/mux + pattern detector 

 Easy to generate ALU flags: < 10 LUTs for C, O 

 Pipelined access over 500 MHz 

 



DSP advantage 
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 Instruction coverage (two double clocked DSPs / pipeline) 

 1 cycle ALU (1 DSP) 

 LD/ST (address calculation) 

 Bit-wise logic (and, or, …) 

 SETHI (value by pass) 

 JMPL, RETT, CALL (address calculation) 

 SAVE/RESTORE (add/sub) 

 WRPSR, RDPSR, RDWIM (XOR op) 

 Long latency ALU instructions (1 DSP) 

 Shift/MUL (2 cycles)  

 

 5%~10% logic save for 32-bit data path 

 

 



Host Cache/TLB 
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 Accelerating emulation performance! 
 Need separate model for target cache 

 

 Per thread cache (Partitioned) 
 Split I/D direct-map write-allocate write-back cache 

 Block size: 32 bytes (BEE3 DDR2 controller heart beat) 

 64-thread configuration: 256B I$, 256B D$ 

 Size doubled in 32-thread configuration 

 Non-blocking cache, 64 outstanding requests (max) 

 Physical tags, indexed by virtual or physical address 

 $ size < page size 

 67% BRAM usage  

 

 Per thread TLB 
 Split I/D direct-map TLB: 8 entries ITLB, 8 entries DTLB 

 Dummy currently  

 Static translation for Solaris virtual address layout 



Cache-Memory Architecture 
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 Cache controller 
 Non-blocking pipelined access (3-stages) matches CPU pipeline 
 Decoupled access/refill: allow pipelined, OOO mem accesses 
 Tell the pipeline to “replay” inst. on miss 
 128-bit refill/write back data path  

 fill one block at 2x clk rate 
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Example: A distributed memory non-cache coherent system 
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 Eight multithreaded SPARC v8 pipelines in 
two clusters 
 Each thread emulates one independent node 

in target system 
 512 nodes/FPGA 
 Predicted emulation performance:  

 ~1 GIPS/FPGA (10% I$ miss, 30% D$ 
miss, 30% LD/ST) 

 x2 compared to naïve manycore 
implementation 

 

 Memory subsystem 
 Total memory capacity 16 GB, 32MB/node 

(512 nodes) 
 One DDR2 memory controller per cluster 
 Per FPGA bandwidth: 7.2 GB/s  
 Memory space is partitioned to emulate 

distributed memory system 
 144-bit wide credit-based memory network 

 

 Inter-node communication (under 
development) 
 Two-level tree network  with DMA to provide 

all-to-all communication 



Project Status 
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 Done with RTL implementation 

 ~12,000 lines synthesizable Systemverilog code 

 FPGA resource utilization per pipeline on Xilinx V5 LX110T 

 ~4% logic (LUT), ~10% BRAM 

 Max 10 pipelines, but back off to 8 or less 

 

 Built RTL verification infrastructure 

 SPARC v8 certification test suite (donated by SPARC 
international) + Systemverilog 

 Can be used to run more programs but very slow  

(~0.3 KIPS) 

 

 

 

 



Project Status 
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 Passed all SPARC v8 integer diagnostics in pre-
synthesized RTL simulation 

 Run single threaded Solaris apps (5 syscall supported so 
far) 

 Working on HW verification after synthesis and P&R 

 Synthesized with an alpha version of Synplify 

 Will support MentorGraphics Precision 2008a Update 
2 in late Nov 

 

 Planned Release in Jan 09 

 64/128 emulated CPUs on Xilinx ML505 board @ 
$500 + 2GB DDR2 DRAM cost 

 Source code will be available under BSD license 



Thank you 

31 


