
RAMP Gold
Hardware and Software Architecture

Zhangxi Tan, Yunsup Lee, Andrew Waterman, Rimas Avizienis,
David Patterson, Krste Asanovic

UC Berkeley

Jan 2009

2 2

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o
s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

3

RAMP Gold : A Parlab manycore emulator

 Leverage RAMP FPGA emulation
infrastructure to build prototypes of
proposed architectural features

 Fast enough to run real apps

 “tapeout” everyday

 RAMP Gold

 Single-socket tiled manycore target
 SPARC v8 -> ISA neutural

 Shared memory, distributed coherent cache

 Multiple on-chip networks and memory
channels

 Split functional/timing model, both in
hardware

 Host multithreading of both functional
and timing models

Parlab Manycore

Functional
Model

Pipeline

Arch

State

Timing
Model

Pipeline

Timing

State

Host multithreading
 Single hardware pipeline with multiple copies of CPU state

 Virtualized the pipeline with fine-grained multithreading to
emulate more target CPUs with high efficiency (i.e. MIPS/FPGA)

 Hide emulation latencies

 Not multithreading target

4

+1

PC

1 PC

1 PC

1 PC

1

I$ IR GPR1 GPR1 GPR1 GPR1

X

Y

A

L

U

D$

6 6

DE

6

Thread

Select

CPU

1

CPU

2

CPU

63

CPU

64
Target Model

Functional CPU model on FPGA

text

Decode Timing

Timing

State

I$ timing

PC

Inst / Partial

Decode result

Execution

Timing

D$ Timing

Mem Address

Commit Timing

Functional

Status

Functional

Pipeline Controls

Memory

Timing Model

text

Instruction

Fetch

Static Thread

Selection

(Round Robin)

Special

Registers

Host I$/I-

MMU
Decode

32-bit Instruction

Tag/Data read request

Regfile

Decoding

32-bit

Multithreade

d Register

File

Decode ALU

control/Exception

Detection
imm

pc

OP2 OP1

Execution Unit 1

(Simple ALU)

Execution Unit 2

(Complex ALU)

Special Register

OPs

Memory

Host D$/

DMMU

Write Back/

Exception

Tag/Data read request

128-bit dataWrite Back

/ Exception

Host memory

interface

Host memory

interface

Thread

Selection

Instruction

Fetch

Decode

Register File

Access

Execution

Memory

Functional ModelTiming Model 5

RAMP Gold v1 model

Balancing Func. And Timing Models

6

Timing
Model

Timing
Model

Host DRAM Cache

G

P

R

1

G

P

R

1

G

P

R

1

G

P

R

1

G

P

R

1

G

P

R

1

Functional
Model

Timing
Model

 Single functional model supports multiple timing models
on FPGAs

RAMP Gold Implementation

7

Xilinx ML505

BEE3

 Single FPGA Implementation

 Low cost Xilinx ML505 board

 64~128 cores, 2GB DDR2, FP,
timing model, 100~130 MIPS

 A 64-core functional model demo

 Multi-FPGA Implementation

 BEE3 : 4 Xilinx Virtex 5 LX155T

 1K~2K cores, 64GB DDR2, FP,
timing model
 Higher emulation capacity and memory

bandwidth

RAMP Gold Prototyping
 Version 1

 Single FPGA implementation on Xilinx ML505

 64~128 cores, integer only, 2G byte memory, running
at 100 MHz

 Simple timing model

 Single in-order issue CPU with an ideal shared memory (2-
cycle access latency)

 RAMP performance counter support

 Full verification environment
 Software simulator (C-gold)

 RTL/netlist verification

 HW on-chip verification

 BSD license : Everything is built from scratch!

8

CPU Functional Model (1)

 64 HW threads, full 32-bit SPARC v8 CPU

 The same binary runs on both SUN boxes and RAMP

 Optimized for emulation throughput (MIPS/FPGA)

 1 cycle access latency for most of the instructions on host

 Microcode operation for complex and new instructions

 E.g. trap, active messages

 Design for FPGA fabric for optimal performance

 “Deep” pipeline : 11 physical stages, no bypassing network

 DSP based ALU

 ECC/parity protected RAM/cache lines and etc.

 Double clocked BRAM/LUTRAM

 Fine-tuned FPGA resource mapping

9

CPU Functional Model (2)

 Status

 Coded in Systemverilog

 Passed the verification suite donated by SPARC International

 Verified against our C functional simulator

 Mapped and tested on HW @ 100 MHz

 Maximum frequency > 130 MHz

 FPGA resource consumption (XCV5LX50T)

 1 CPU + SRAM controller + memory network

10

LUT Register BRAM DSP

2,719 4,852 13 2

9% 16% 22% 4%

Verification/Testing Flow

11

ELF to

BRAM

Loader

Standard

ELF Loader

Frontend Test Server

ELF to

DRAM

Loader

App Source

Files

(.S or .C)

GNU SPARC v8

Compiler/

Linker

Customized

Linker Script

(.lds)

RTL src files /

netlist

(.sv, .v)

ELF

Binaries

Modelsim SE/Questasim 6.4a

Host dynamic

simulation

libraries (.so)

libbfd

Disassembler C

implementation
Frontend Links

Xilinx Unisim Library Systemverilog DPI interface

Simulation

logs

Checker

C Functional

Simulator

Frontend Links

Reference Result

FPGA Target

Xilinx ML505, BEE3

Frontend Links

HW state

dumps

Solaris/Linux Machine

(Handle Syscall)

GCC Toolchain
 SPARC cross compiler with newlib

 Built with (binutils-2.18, gcc-4.3.2/gmp-4.3.2/mpfr-2.3.2, newlib-
1.16.0)

 sparc-elf-{gcc, g++, ld, nm, objdump, ranlib, strip, …}

 Link newlib statically

 newlib is a C library intended for use on embedded systems

 C functions in newlib are narrowed down to 19 system calls

 _exit, close, environ, execve, fork, fstat, getpid, isatty, kill,
link, lseek, open, read, sbrk, stat, times, unlink, wait, write

 Now we can compile our C, C++ source code (w/
standard C functions) to a SPARC executable

 sparc-elf-gcc –o hello hello.c –lc –lsys –mcpu=v8

12

Frontend Machine

 Multiple backends

 C-gold functional simulator (link: function calls)

 Modelsim simulator (link: DPI)

 Actual H/W (Xilinx ML505, BEE3) (link: gigabit ethernet)

 Narrow interface to support a new backend

 Host/Target interface

 CPU reset

 Memory interface

 {read,write}_{signed,unsigned}_{8,16,32,64}

 Execute system calls received from the backend

 Signaled by the backend proxy kernel

 Map a Solaris system call to a Linux system call and execute
13

Proxy Kernel
 How could we support I/Os?

 The target doesn’t have any peripherals (e.g. disks)

 It would be a pain to program a system which can’t read or
write to anything…

 It would be more pain to make the peripherals work with the
actual H/W

 A minimal kernel which acts as a proxy for system calls
invoked by newlib

 Proxy kernel sends the arguments and the system call number
to the frontend machine

 The frontend machine does the actual system call and returns
the results back to the proxy kernel

 Finally the PC is moved back to the application and everybody is
happy

14

C-gold Functional Simulator

 Baseline functional model to verify our functional model
written in system verilog

 Full 32-bit SPARC v8

 Includes an IEEE 754 compatible FPU

 New instruction introduced to support active messages

 SENDAM

 Written from scratch, no junk in it

 Very fast, ~25 MIPS

 Easy to understand

 Easy to add/modify modules for experiments

 Flexible parameters (Number of target threads, host threads, …)

15

ELF to

BRAM

Loader

Standard

ELF Loader

Frontend Test Server

ELF to

DRAM

Loader

App Source

Files

(.S or .C)

GNU SPARC v8

Compiler/

Linker

Customized

Linker Script

(.lds)

RTL src files /

netlist

(.sv, .v)

ELF

Binaries

Modelsim SE/Questasim 6.4a

Host dynamic

simulation

libraries (.so)

libbfd

Disassembler C

implementation
Frontend Links

Xilinx Unisim Library Systemverilog DPI interface

Simulation

logs

Checker

C Functional

Simulator

Frontend Links

Reference Result

FPGA Target

Xilinx ML505, BEE3

Frontend Links

HW state

dumps

Solaris/Linux Machine

(Handle Syscall)

16

Code & Cross-
Compile

Proxy Kernel

write(…)

syscall req

syscall
res

On the fly DEMO

17

Plans for the Next Version

 Try out several research projects

 Performance Counter

 Virtual Local Stores

 Enhance the functional model and timing model

 Add FPUs

 Memory/cache timing models

18

Acknowledgement

Special thanks to Prof. Kurt
Keutzer for help from Synopsys!

19

Backup Slides

20

Pipeline Architecture

21

Instruction Fetch 1
(Issue address Request)

Static Thread

Selection
(Round Robin)

Special Registers

(pc/npc, wim, psr,

thread control

registers)

I-Cache

(nine 18kb

BRAMs)

Microcode ROM

Instruction Fetch 2
(compare tag)

32-bit

Instruction

Synthesized

Instruction
Tag compare result

Micro inst.

Tag/Data read

request

Decode
(Resolve Branch,

Decode register file

address)

Regfile Read
2 cycles (pipelined)

32-bit

Multithreaded

Register File

(four 36kb

BRAMs)

Decode ALU

control/Exception

Detection
imm

pc

OP2 OP1

MUL/DIV/SHF
(4 DSPs)

Simple ALU (1 DSP)

/LDST decoding

Special register

handling
(RDPSR/RDWIM)

Mem request

under cache miss

Tag

Unaligned address

detection / Store

preparation

Issue Load
(issue address)

D-Cache

(nine 18kb

BRAMs)

Trap/IRQ handling Read & Select

Tag/Data read

request

Tag / 128-bit data

Generate

microcode request

Load align /

Write Back

128-bit read & modify data

128-bit memory

interface

128-bit memory

interface

Thread

Selection

Instruction

Fetch 1

Decode

Register File

Access 1 & 2*

Execution

Memory 1

Write Back

/ Exception

LUT RAM (clk x2)

LUT ROM

BRAM (clk x2)

DSP (clk x2)

Instruction

Fetch 2

Register File

Access 3

Memory 2

 Single issue in order pipeline (integer
only)
 11 pipeline stages (no forwarding) -> 7

logical stages

 Static thread scheduling, zero overhead
context switch

 Avoid complex operations with “microcode”

 E.g. traps, ST

 32-bit I/O bus (threaded) with interrupt
support

 Physical implementation
 All BRAM/LUTRAM/DSP blocks in double

clocked or DDR mode

 Manually-controlled BRAM mapping

 LUTRAM mapping by memory compiler

 Extra pipeline stages for routing

 ECC/Parity protected BRAMs

 Deep submicron effect on FPGAs

Implementation Challenges

22

 CPU state storage

 Where?

 How large? Does it fit on FPGA?

 Minimize FPGA resource consumption

 E.g. Mapping ALU to DSPs

 Host cache & TLB

 Need cache?

 Architecture and capacity

 Bandwidth requirement and R/W access ports

 host multithreading amplifies the requirement

State storage

23

 Complete 32-bit SPARC v8 ISA w. traps/exceptions

 All CPU states (integer only) are stored in SRAMs on FPGA

 Per context register file -- BRAM

 3 register windows stored in BRAM chunks of 64

 8 (global) + 3*16 (reg window) = 54

 6 special registers

 pc/npc -- LUTRAM

 PSR (Processor state register) -- LUTRAM

 WIM (Register Window Mask) -- LUTRAM

 Y (High 32-bit result for MUL/DIV) -- LUTRAM

 TBR (Trap based registers) -- BRAM (packed with regfile)

 Buffers for host multithreading (LUTRAM)

 Maximum 64 threads per pipeline on Xilinx Virtex5

 Bounded by LUTRAM depth (6-input LUTs)

Mapping SPARC ALU to DSP

24

 Xilinx DSP48E advantage

 48-bit add/sub/logic/mux + pattern detector

 Easy to generate ALU flags: < 10 LUTs for C, O

 Pipelined access over 500 MHz

DSP advantage

25

 Instruction coverage (two double clocked DSPs / pipeline)

 1 cycle ALU (1 DSP)

 LD/ST (address calculation)

 Bit-wise logic (and, or, …)

 SETHI (value by pass)

 JMPL, RETT, CALL (address calculation)

 SAVE/RESTORE (add/sub)

 WRPSR, RDPSR, RDWIM (XOR op)

 Long latency ALU instructions (1 DSP)

 Shift/MUL (2 cycles)

 5%~10% logic save for 32-bit data path

Host Cache/TLB

26

 Accelerating emulation performance!
 Need separate model for target cache

 Per thread cache (Partitioned)
 Split I/D direct-map write-allocate write-back cache

 Block size: 32 bytes (BEE3 DDR2 controller heart beat)

 64-thread configuration: 256B I$, 256B D$

 Size doubled in 32-thread configuration

 Non-blocking cache, 64 outstanding requests (max)

 Physical tags, indexed by virtual or physical address

 $ size < page size

 67% BRAM usage

 Per thread TLB
 Split I/D direct-map TLB: 8 entries ITLB, 8 entries DTLB

 Dummy currently

 Static translation for Solaris virtual address layout

Cache-Memory Architecture

27

 Cache controller
 Non-blocking pipelined access (3-stages) matches CPU pipeline
 Decoupled access/refill: allow pipelined, OOO mem accesses
 Tell the pipeline to “replay” inst. on miss
 128-bit refill/write back data path

 fill one block at 2x clk rate

RAMB18SDP RAMB36SDP (x72) RAMB36SDP (x72) RAMB36SDP (x72) RAMB36SDP (x72)

 Tag (Parity)

512 x 36

Data (ECC)

512x72x4

Prepare LD/ST

address

Memory Stage (1)

Load Select / Routing

Cache FSM
(Hit, exception, etc)

Exception/Write

Back Stage

Memory Stage (2)

Read & Modify

64-bit data

Tag

replay?

Pipeline Register

Write

Back

Cache

Integer Pipeline

Pipeline Register

Pipeline State

Control

Load Align/Sign

Memory

Command FIFO

64-bit data

+ Tag

128-bit data

Refill

Memory

Controller

128-bit

data

Memory request

address
Victim data

write back

Refill

Index

Mem ops

Lookup

Index

Example: A distributed memory non-cache coherent system

28

 Eight multithreaded SPARC v8 pipelines in
two clusters
 Each thread emulates one independent node

in target system
 512 nodes/FPGA
 Predicted emulation performance:

 ~1 GIPS/FPGA (10% I$ miss, 30% D$
miss, 30% LD/ST)

 x2 compared to naïve manycore
implementation

 Memory subsystem
 Total memory capacity 16 GB, 32MB/node

(512 nodes)
 One DDR2 memory controller per cluster
 Per FPGA bandwidth: 7.2 GB/s
 Memory space is partitioned to emulate

distributed memory system
 144-bit wide credit-based memory network

 Inter-node communication (under
development)
 Two-level tree network with DMA to provide

all-to-all communication

Project Status

29

 Done with RTL implementation

 ~12,000 lines synthesizable Systemverilog code

 FPGA resource utilization per pipeline on Xilinx V5 LX110T

 ~4% logic (LUT), ~10% BRAM

 Max 10 pipelines, but back off to 8 or less

 Built RTL verification infrastructure

 SPARC v8 certification test suite (donated by SPARC
international) + Systemverilog

 Can be used to run more programs but very slow

(~0.3 KIPS)

Project Status

30

 Passed all SPARC v8 integer diagnostics in pre-
synthesized RTL simulation

 Run single threaded Solaris apps (5 syscall supported so
far)

 Working on HW verification after synthesis and P&R

 Synthesized with an alpha version of Synplify

 Will support MentorGraphics Precision 2008a Update
2 in late Nov

 Planned Release in Jan 09

 64/128 emulated CPUs on Xilinx ML505 board @
$500 + 2GB DDR2 DRAM cost

 Source code will be available under BSD license

Thank you

31

