
RAMP Gold
Hardware and Software Architecture

Zhangxi Tan, Yunsup Lee, Andrew Waterman, Rimas Avizienis,
David Patterson, Krste Asanovic

UC Berkeley

Jan 2009

2 2

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o
s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

3

RAMP Gold : A Parlab manycore emulator

 Leverage RAMP FPGA emulation
infrastructure to build prototypes of
proposed architectural features

 Fast enough to run real apps

 “tapeout” everyday

 RAMP Gold

 Single-socket tiled manycore target
 SPARC v8 -> ISA neutural

 Shared memory, distributed coherent cache

 Multiple on-chip networks and memory
channels

 Split functional/timing model, both in
hardware

 Host multithreading of both functional
and timing models

Parlab Manycore

Functional
Model

Pipeline

Arch

State

Timing
Model

Pipeline

Timing

State

Host multithreading
 Single hardware pipeline with multiple copies of CPU state

 Virtualized the pipeline with fine-grained multithreading to
emulate more target CPUs with high efficiency (i.e. MIPS/FPGA)

 Hide emulation latencies

 Not multithreading target

4

+1

PC

1 PC

1 PC

1 PC

1

I$ IR GPR1 GPR1 GPR1 GPR1

X

Y

A

L

U

D$

6 6

DE

6

Thread

Select

CPU

1

CPU

2

CPU

63

CPU

64
Target Model

Functional CPU model on FPGA

text

Decode Timing

Timing

State

I$ timing

PC

Inst / Partial

Decode result

Execution

Timing

D$ Timing

Mem Address

Commit Timing

Functional

Status

Functional

Pipeline Controls

Memory

Timing Model

text

Instruction

Fetch

Static Thread

Selection

(Round Robin)

Special

Registers

Host I$/I-

MMU
Decode

32-bit Instruction

Tag/Data read request

Regfile

Decoding

32-bit

Multithreade

d Register

File

Decode ALU

control/Exception

Detection
imm

pc

OP2 OP1

Execution Unit 1

(Simple ALU)

Execution Unit 2

(Complex ALU)

Special Register

OPs

Memory

Host D$/

DMMU

Write Back/

Exception

Tag/Data read request

128-bit dataWrite Back

/ Exception

Host memory

interface

Host memory

interface

Thread

Selection

Instruction

Fetch

Decode

Register File

Access

Execution

Memory

Functional ModelTiming Model 5

RAMP Gold v1 model

Balancing Func. And Timing Models

6

Timing
Model

Timing
Model

Host DRAM Cache

G

P

R

1

G

P

R

1

G

P

R

1

G

P

R

1

G

P

R

1

G

P

R

1

Functional
Model

Timing
Model

 Single functional model supports multiple timing models
on FPGAs

RAMP Gold Implementation

7

Xilinx ML505

BEE3

 Single FPGA Implementation

 Low cost Xilinx ML505 board

 64~128 cores, 2GB DDR2, FP,
timing model, 100~130 MIPS

 A 64-core functional model demo

 Multi-FPGA Implementation

 BEE3 : 4 Xilinx Virtex 5 LX155T

 1K~2K cores, 64GB DDR2, FP,
timing model
 Higher emulation capacity and memory

bandwidth

RAMP Gold Prototyping
 Version 1

 Single FPGA implementation on Xilinx ML505

 64~128 cores, integer only, 2G byte memory, running
at 100 MHz

 Simple timing model

 Single in-order issue CPU with an ideal shared memory (2-
cycle access latency)

 RAMP performance counter support

 Full verification environment
 Software simulator (C-gold)

 RTL/netlist verification

 HW on-chip verification

 BSD license : Everything is built from scratch!

8

CPU Functional Model (1)

 64 HW threads, full 32-bit SPARC v8 CPU

 The same binary runs on both SUN boxes and RAMP

 Optimized for emulation throughput (MIPS/FPGA)

 1 cycle access latency for most of the instructions on host

 Microcode operation for complex and new instructions

 E.g. trap, active messages

 Design for FPGA fabric for optimal performance

 “Deep” pipeline : 11 physical stages, no bypassing network

 DSP based ALU

 ECC/parity protected RAM/cache lines and etc.

 Double clocked BRAM/LUTRAM

 Fine-tuned FPGA resource mapping

9

CPU Functional Model (2)

 Status

 Coded in Systemverilog

 Passed the verification suite donated by SPARC International

 Verified against our C functional simulator

 Mapped and tested on HW @ 100 MHz

 Maximum frequency > 130 MHz

 FPGA resource consumption (XCV5LX50T)

 1 CPU + SRAM controller + memory network

10

LUT Register BRAM DSP

2,719 4,852 13 2

9% 16% 22% 4%

Verification/Testing Flow

11

ELF to

BRAM

Loader

Standard

ELF Loader

Frontend Test Server

ELF to

DRAM

Loader

App Source

Files

(.S or .C)

GNU SPARC v8

Compiler/

Linker

Customized

Linker Script

(.lds)

RTL src files /

netlist

(.sv, .v)

ELF

Binaries

Modelsim SE/Questasim 6.4a

Host dynamic

simulation

libraries (.so)

libbfd

Disassembler C

implementation
Frontend Links

Xilinx Unisim Library Systemverilog DPI interface

Simulation

logs

Checker

C Functional

Simulator

Frontend Links

Reference Result

FPGA Target

Xilinx ML505, BEE3

Frontend Links

HW state

dumps

Solaris/Linux Machine

(Handle Syscall)

GCC Toolchain
 SPARC cross compiler with newlib

 Built with (binutils-2.18, gcc-4.3.2/gmp-4.3.2/mpfr-2.3.2, newlib-
1.16.0)

 sparc-elf-{gcc, g++, ld, nm, objdump, ranlib, strip, …}

 Link newlib statically

 newlib is a C library intended for use on embedded systems

 C functions in newlib are narrowed down to 19 system calls

 _exit, close, environ, execve, fork, fstat, getpid, isatty, kill,
link, lseek, open, read, sbrk, stat, times, unlink, wait, write

 Now we can compile our C, C++ source code (w/
standard C functions) to a SPARC executable

 sparc-elf-gcc –o hello hello.c –lc –lsys –mcpu=v8

12

Frontend Machine

 Multiple backends

 C-gold functional simulator (link: function calls)

 Modelsim simulator (link: DPI)

 Actual H/W (Xilinx ML505, BEE3) (link: gigabit ethernet)

 Narrow interface to support a new backend

 Host/Target interface

 CPU reset

 Memory interface

 {read,write}_{signed,unsigned}_{8,16,32,64}

 Execute system calls received from the backend

 Signaled by the backend proxy kernel

 Map a Solaris system call to a Linux system call and execute
13

Proxy Kernel
 How could we support I/Os?

 The target doesn’t have any peripherals (e.g. disks)

 It would be a pain to program a system which can’t read or
write to anything…

 It would be more pain to make the peripherals work with the
actual H/W

 A minimal kernel which acts as a proxy for system calls
invoked by newlib

 Proxy kernel sends the arguments and the system call number
to the frontend machine

 The frontend machine does the actual system call and returns
the results back to the proxy kernel

 Finally the PC is moved back to the application and everybody is
happy

14

C-gold Functional Simulator

 Baseline functional model to verify our functional model
written in system verilog

 Full 32-bit SPARC v8

 Includes an IEEE 754 compatible FPU

 New instruction introduced to support active messages

 SENDAM

 Written from scratch, no junk in it

 Very fast, ~25 MIPS

 Easy to understand

 Easy to add/modify modules for experiments

 Flexible parameters (Number of target threads, host threads, …)

15

ELF to

BRAM

Loader

Standard

ELF Loader

Frontend Test Server

ELF to

DRAM

Loader

App Source

Files

(.S or .C)

GNU SPARC v8

Compiler/

Linker

Customized

Linker Script

(.lds)

RTL src files /

netlist

(.sv, .v)

ELF

Binaries

Modelsim SE/Questasim 6.4a

Host dynamic

simulation

libraries (.so)

libbfd

Disassembler C

implementation
Frontend Links

Xilinx Unisim Library Systemverilog DPI interface

Simulation

logs

Checker

C Functional

Simulator

Frontend Links

Reference Result

FPGA Target

Xilinx ML505, BEE3

Frontend Links

HW state

dumps

Solaris/Linux Machine

(Handle Syscall)

16

Code & Cross-
Compile

Proxy Kernel

write(…)

syscall req

syscall
res

On the fly DEMO

17

Plans for the Next Version

 Try out several research projects

 Performance Counter

 Virtual Local Stores

 Enhance the functional model and timing model

 Add FPUs

 Memory/cache timing models

18

Acknowledgement

Special thanks to Prof. Kurt
Keutzer for help from Synopsys!

19

Backup Slides

20

Pipeline Architecture

21

Instruction Fetch 1
(Issue address Request)

Static Thread

Selection
(Round Robin)

Special Registers

(pc/npc, wim, psr,

thread control

registers)

I-Cache

(nine 18kb

BRAMs)

Microcode ROM

Instruction Fetch 2
(compare tag)

32-bit

Instruction

Synthesized

Instruction
Tag compare result

Micro inst.

Tag/Data read

request

Decode
(Resolve Branch,

Decode register file

address)

Regfile Read
2 cycles (pipelined)

32-bit

Multithreaded

Register File

(four 36kb

BRAMs)

Decode ALU

control/Exception

Detection
imm

pc

OP2 OP1

MUL/DIV/SHF
(4 DSPs)

Simple ALU (1 DSP)

/LDST decoding

Special register

handling
(RDPSR/RDWIM)

Mem request

under cache miss

Tag

Unaligned address

detection / Store

preparation

Issue Load
(issue address)

D-Cache

(nine 18kb

BRAMs)

Trap/IRQ handling Read & Select

Tag/Data read

request

Tag / 128-bit data

Generate

microcode request

Load align /

Write Back

128-bit read & modify data

128-bit memory

interface

128-bit memory

interface

Thread

Selection

Instruction

Fetch 1

Decode

Register File

Access 1 & 2*

Execution

Memory 1

Write Back

/ Exception

LUT RAM (clk x2)

LUT ROM

BRAM (clk x2)

DSP (clk x2)

Instruction

Fetch 2

Register File

Access 3

Memory 2

 Single issue in order pipeline (integer
only)
 11 pipeline stages (no forwarding) -> 7

logical stages

 Static thread scheduling, zero overhead
context switch

 Avoid complex operations with “microcode”

 E.g. traps, ST

 32-bit I/O bus (threaded) with interrupt
support

 Physical implementation
 All BRAM/LUTRAM/DSP blocks in double

clocked or DDR mode

 Manually-controlled BRAM mapping

 LUTRAM mapping by memory compiler

 Extra pipeline stages for routing

 ECC/Parity protected BRAMs

 Deep submicron effect on FPGAs

Implementation Challenges

22

 CPU state storage

 Where?

 How large? Does it fit on FPGA?

 Minimize FPGA resource consumption

 E.g. Mapping ALU to DSPs

 Host cache & TLB

 Need cache?

 Architecture and capacity

 Bandwidth requirement and R/W access ports

 host multithreading amplifies the requirement

State storage

23

 Complete 32-bit SPARC v8 ISA w. traps/exceptions

 All CPU states (integer only) are stored in SRAMs on FPGA

 Per context register file -- BRAM

 3 register windows stored in BRAM chunks of 64

 8 (global) + 3*16 (reg window) = 54

 6 special registers

 pc/npc -- LUTRAM

 PSR (Processor state register) -- LUTRAM

 WIM (Register Window Mask) -- LUTRAM

 Y (High 32-bit result for MUL/DIV) -- LUTRAM

 TBR (Trap based registers) -- BRAM (packed with regfile)

 Buffers for host multithreading (LUTRAM)

 Maximum 64 threads per pipeline on Xilinx Virtex5

 Bounded by LUTRAM depth (6-input LUTs)

Mapping SPARC ALU to DSP

24

 Xilinx DSP48E advantage

 48-bit add/sub/logic/mux + pattern detector

 Easy to generate ALU flags: < 10 LUTs for C, O

 Pipelined access over 500 MHz

DSP advantage

25

 Instruction coverage (two double clocked DSPs / pipeline)

 1 cycle ALU (1 DSP)

 LD/ST (address calculation)

 Bit-wise logic (and, or, …)

 SETHI (value by pass)

 JMPL, RETT, CALL (address calculation)

 SAVE/RESTORE (add/sub)

 WRPSR, RDPSR, RDWIM (XOR op)

 Long latency ALU instructions (1 DSP)

 Shift/MUL (2 cycles)

 5%~10% logic save for 32-bit data path

Host Cache/TLB

26

 Accelerating emulation performance!
 Need separate model for target cache

 Per thread cache (Partitioned)
 Split I/D direct-map write-allocate write-back cache

 Block size: 32 bytes (BEE3 DDR2 controller heart beat)

 64-thread configuration: 256B I$, 256B D$

 Size doubled in 32-thread configuration

 Non-blocking cache, 64 outstanding requests (max)

 Physical tags, indexed by virtual or physical address

 $ size < page size

 67% BRAM usage

 Per thread TLB
 Split I/D direct-map TLB: 8 entries ITLB, 8 entries DTLB

 Dummy currently

 Static translation for Solaris virtual address layout

Cache-Memory Architecture

27

 Cache controller
 Non-blocking pipelined access (3-stages) matches CPU pipeline
 Decoupled access/refill: allow pipelined, OOO mem accesses
 Tell the pipeline to “replay” inst. on miss
 128-bit refill/write back data path

 fill one block at 2x clk rate

RAMB18SDP RAMB36SDP (x72) RAMB36SDP (x72) RAMB36SDP (x72) RAMB36SDP (x72)

 Tag (Parity)

512 x 36

Data (ECC)

512x72x4

Prepare LD/ST

address

Memory Stage (1)

Load Select / Routing

Cache FSM
(Hit, exception, etc)

Exception/Write

Back Stage

Memory Stage (2)

Read & Modify

64-bit data

Tag

replay?

Pipeline Register

Write

Back

Cache

Integer Pipeline

Pipeline Register

Pipeline State

Control

Load Align/Sign

Memory

Command FIFO

64-bit data

+ Tag

128-bit data

Refill

Memory

Controller

128-bit

data

Memory request

address
Victim data

write back

Refill

Index

Mem ops

Lookup

Index

Example: A distributed memory non-cache coherent system

28

 Eight multithreaded SPARC v8 pipelines in
two clusters
 Each thread emulates one independent node

in target system
 512 nodes/FPGA
 Predicted emulation performance:

 ~1 GIPS/FPGA (10% I$ miss, 30% D$
miss, 30% LD/ST)

 x2 compared to naïve manycore
implementation

 Memory subsystem
 Total memory capacity 16 GB, 32MB/node

(512 nodes)
 One DDR2 memory controller per cluster
 Per FPGA bandwidth: 7.2 GB/s
 Memory space is partitioned to emulate

distributed memory system
 144-bit wide credit-based memory network

 Inter-node communication (under
development)
 Two-level tree network with DMA to provide

all-to-all communication

Project Status

29

 Done with RTL implementation

 ~12,000 lines synthesizable Systemverilog code

 FPGA resource utilization per pipeline on Xilinx V5 LX110T

 ~4% logic (LUT), ~10% BRAM

 Max 10 pipelines, but back off to 8 or less

 Built RTL verification infrastructure

 SPARC v8 certification test suite (donated by SPARC
international) + Systemverilog

 Can be used to run more programs but very slow

(~0.3 KIPS)

Project Status

30

 Passed all SPARC v8 integer diagnostics in pre-
synthesized RTL simulation

 Run single threaded Solaris apps (5 syscall supported so
far)

 Working on HW verification after synthesis and P&R

 Synthesized with an alpha version of Synplify

 Will support MentorGraphics Precision 2008a Update
2 in late Nov

 Planned Release in Jan 09

 64/128 emulated CPUs on Xilinx ML505 board @
$500 + 2GB DDR2 DRAM cost

 Source code will be available under BSD license

Thank you

31

