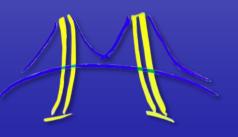
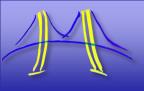
Exploring the Design Space of a Parallel Object Recognition System

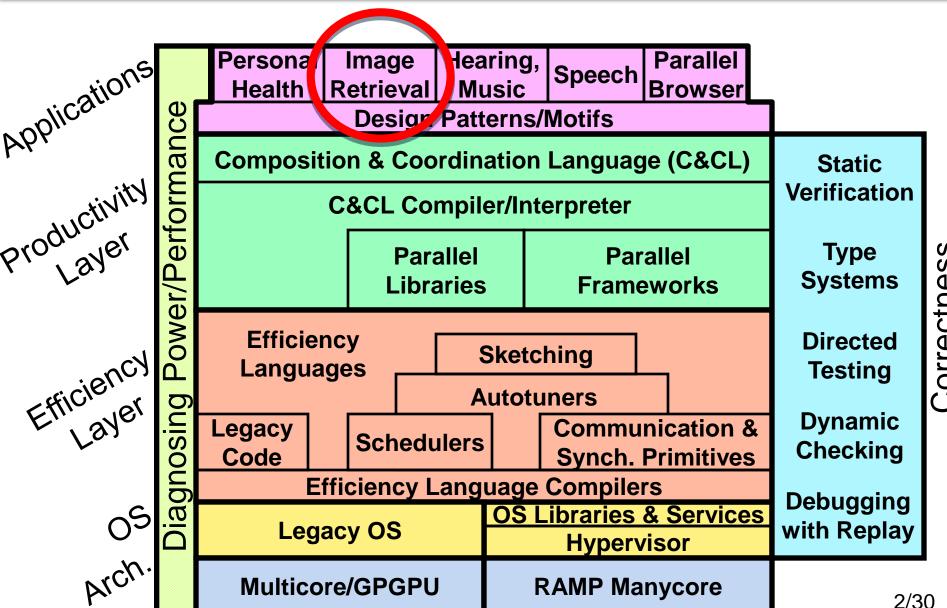
Bor-Yiing Su, subrian@eecs.berkeley.edu
Tasneem G. Brutch, t.brutch@samsung.com
Kurt Keutzer, keutzer@eecs.berkeley.edu

Parallel Computing Lab, University of California, Berkeley

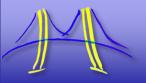




Category of This Work



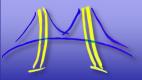
Correctness



What's New?

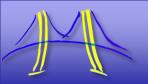
- Exploring more design space to further optimize key kernels in the object recognition system
 - Resulting in performance boosts:
 - Training: from 77.8x to 115x
 - Classification: from 72.5x to 119x
- Propose plans of developing frameworks for automating the procedure of design space exploration on object recognition key kernels

Bor-Yiing Su, Tasneem Brutch, Kurt Keutzer, "A Parallel Region Based Object Recognition System," in *IEEE Workshop on Applications of Computer Vision* (WACV 2011), Hawaii, January 2011



Outline

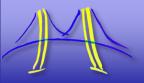
- Design Space
- An Object Recognition System
- Exploring the Design Space of the Object Recognition system
- Future Work



Three Layers of Design Space

The design space of parallel applications is composed of three layers

Design Space	Explanation	Example	
Algorithm Layer	Using different ways to transform same inputs into same or similar outputs	Full Selective No with CW test	
Parallelization Strategy Layer	Using different strategies to parallelize the same algorithm	BFS Graph Partition Parallel Task Queue	
Platform Layer	Using specific hardware features to optimize the same parallelization strategy	Blocking Dimensions 2 x 8 8 x 2	



Statements

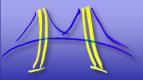
- 1. Exploring the design space is necessary to achieve high performance on a hardware platform of choice
- Take advantage of domain knowledge is necessary to understand trade-offs among different parallelization methods and achieve peak performance

Algorithm Layer

Parallelization Strategy Layer

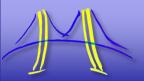
Platform Layer

Design Space

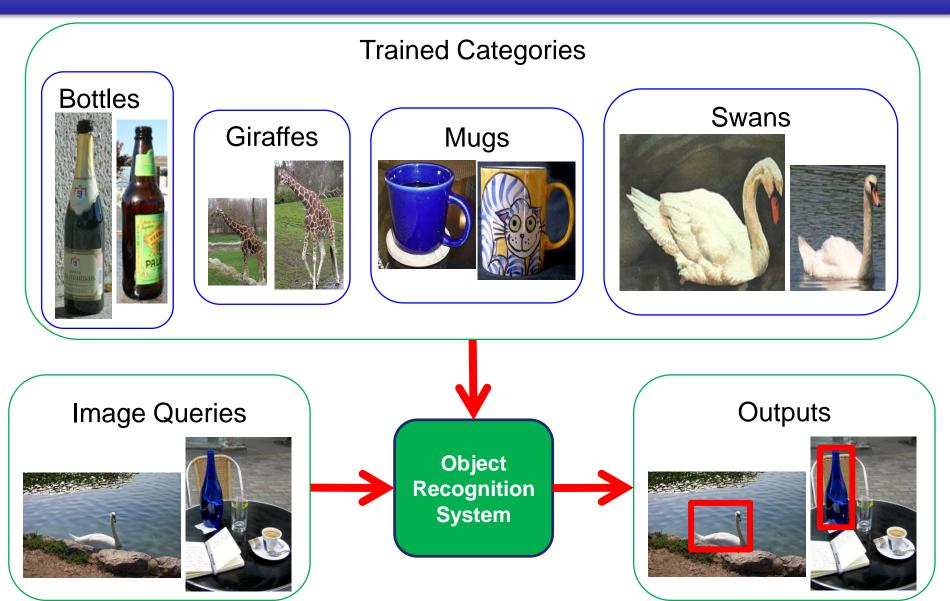


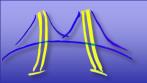
Outline

- Design Space
- An Object Recognition System
- Exploring the Design Space of the Object Recognition system
- Future Work

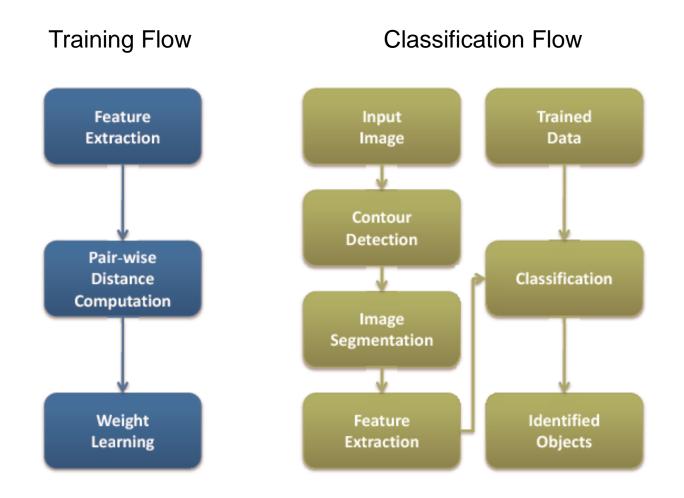


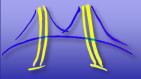
Object Recognition System





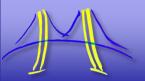
Targeting Object Recognition System





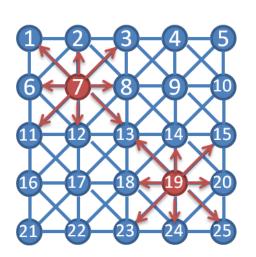
Outline

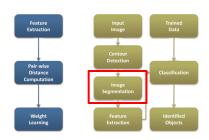
- Design Space
- An Object Recognition System
- Exploring the Design Space of the Object Recognition system
 - Breadth First Search (BFS) Graph Traversal Kernel
 - Histogram Kernel
 - Pair-wise Distance Kernel
 - Overall Performance
 - Demo
- Future Work

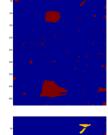


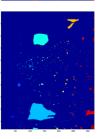
BFS Graph Traversal Kernel

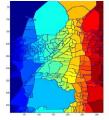
- The image segmentation component heavily relies on the BFS graph traversal kernel
- Image Graph:
 - Nodes represent image pixels
 - Edges represent neighboring relationships
- BFS graph traversal kernel: propagate information from some pixels to other pixels

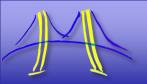






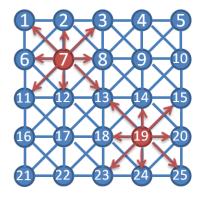




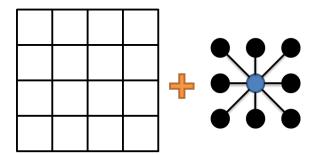


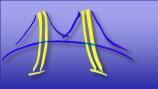
Exploring the Algorithm Layer

- Direct algorithm: Each source node propagates information to its neighbors
 - Traditional BFS graph traversal algorithm



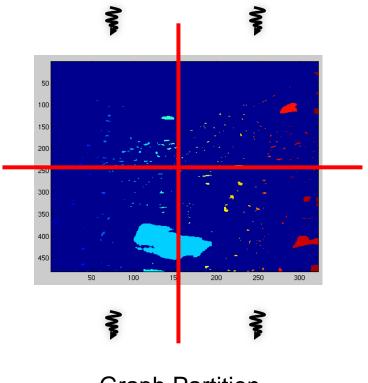
- Reverse algorithm: Each node checks whether it can be updated by one or more neighboring nodes
 - Structured grid computation



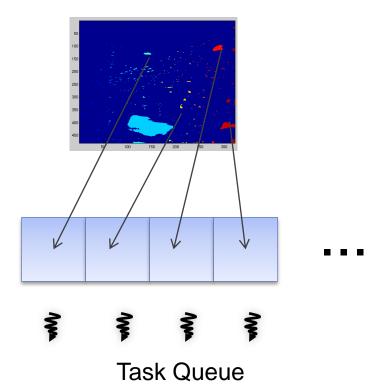


Exploring the Parallelization Strategy Layer

- Two strategies can be used to parallelize the traditional BFS graph traversal algorithm
 - Graph partition
 - Parallel task queue



Graph Partition



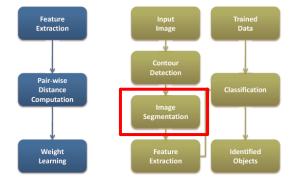


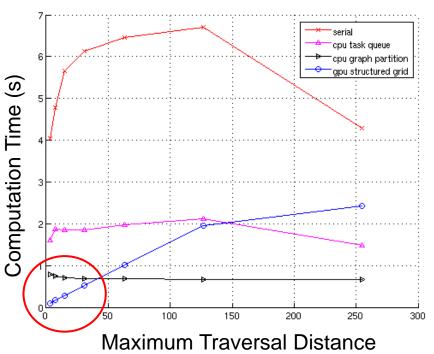
Associating Design Space Exploration with Input Data Properties

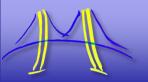
- Explored Design Space
 - Parallel Task queue on Intel Core i7 using OpenMP with 8 threads
 - Graph partition on Intel
 Core i7 using OpenMP with
 8 threads
 - Structured grid on Nvidia GTX 480

Conclusion:

 Use the structured grid method on a GPU in our system



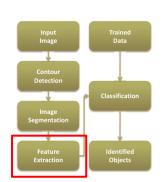


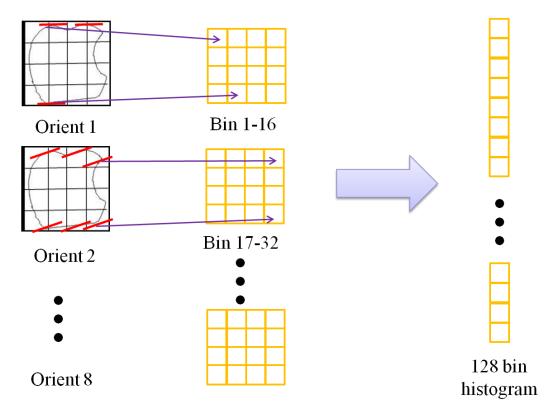


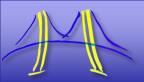
Histogram Kernel

- Each image region is represented by its contour features
- The contour feature of a region is represented by a 128-bin histogram





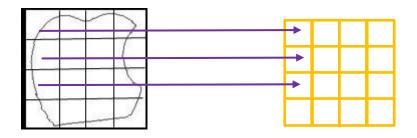




Exploring the Algorithm Layer

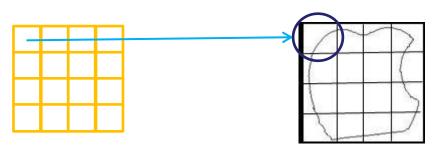
- Data to bins algorithm:
 - Each data point atomically accumulate itself into the corresponding histogram bin

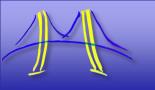
foreach pixel p accumulate p into bin b



- Bins to data algorithm:
 - Each bin process its responsible data points

foreach histogram bin b process pixels $p_1...p_n$

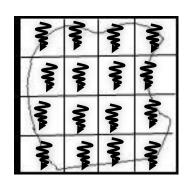


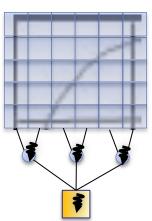


Exploring the Parallelization Strategy Layer

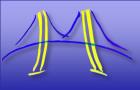
Process each region in parallel

- When dealing with one region, two strategies can be used to parallelize the bins to data algorithm
 - Geometric decomposition: Process each histogram bin in parallel
 - Parallel reduction: For a histogram bin, accumulate its corresponding data points by parallel reduction





Parallel Reduction

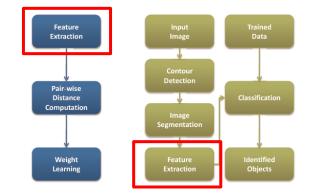


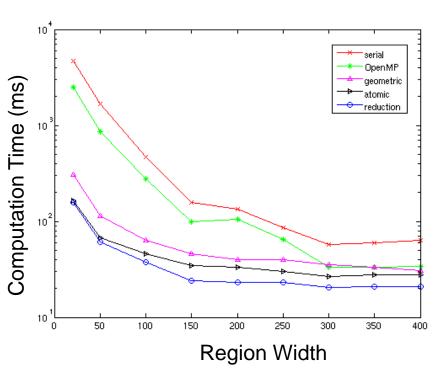
Associating Design Space Exploration with Input Data Properties

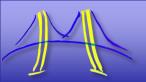
- Explored Design Space
 - Process each region in parallel on Intel Core i7 using OpenMP with 8 threads
 - Geometric decomposition on Nvidia GTX 480
 - Atomic accumulation algorithm on Nvidia GTX 480
 - Parallel reduction on Nvidia GTX 480

Conclusion:

 Use the parallel reduction method on a GPU in our system

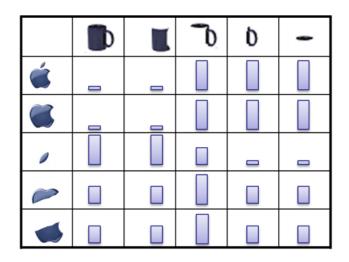


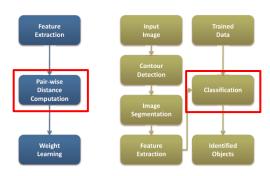




Pair-wise χ² Distance Kernel

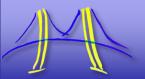
- In both the training stage and the classification stage, we need to compute the pair-wise distance between two region sets
 - Similar regions have shorter distance
 - Different regions have longer distance
- It is a matrix matrix multiplication computation
 - Replacing dot product into χ^2 distance





Definition of the χ^2 distance:

$$\chi^{2}(x,y) = \frac{1}{2} \sum_{i} \frac{(x_{i} - y_{i})^{2}}{x_{i} + y_{i}}$$



Exploring the Design Space

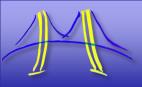
- Algorithm Layer
 - Inner χ² distance

```
Algorithm: Inner \chi^2
1 for i \leftarrow 1 to m
2 for j \leftarrow 1 to n
3 for s \leftarrow 1 to k
4 distance ij \leftarrow distance_{ij} + \frac{(X_{is} - Y_{js})^2}{X_{is} + Y_{js}}
```

• Outer χ^2 distance

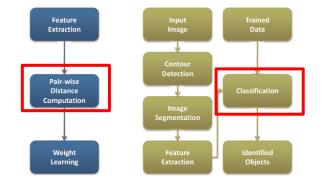
```
Algorithm: Outer \chi^2
1 for s \leftarrow 1 to k
2 for i \leftarrow 1 to m
3 for j \leftarrow 1 to n
4 distance_{ij} \leftarrow distance_{ij} + \frac{(X_{is} - Y_{js})^2}{X_{is} + Y_{js}}
```

- Platform Layer
 - Cache Mechanisms
 - No Cache
 - Hardware Controlled Cache (Texture memory on GPU)
 - Software Controlled Cache (Shared memory on GPU)



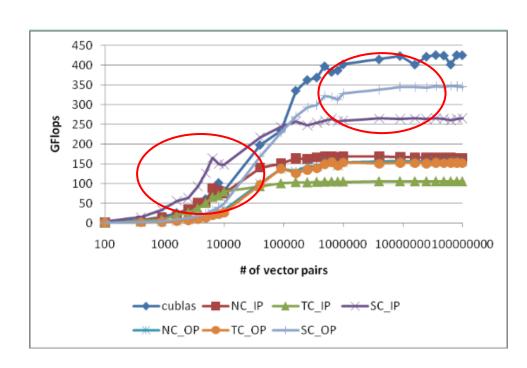
Associating Design Space Exploration with Input Data Properties

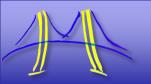
- Explored Design Space
 - The combination of two algorithms and three cache mechanisms on Nvidia GTX 480



Conclusion:

- Use the outer x² distance method with software controlled cache in the training stage
- Use the inner x² distance method with software controlled cache in the classification stage





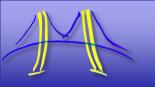
Overall Performance: Speedups

Commute	Computation time (a)		Speedup
Computa tion	Computation time (s)		
	Serial	Parallel	
Feature	543	15.97	34x
Distance	1732	2.9	597x
Weight	57	1.41	40x
Total	2332	20.28	115x

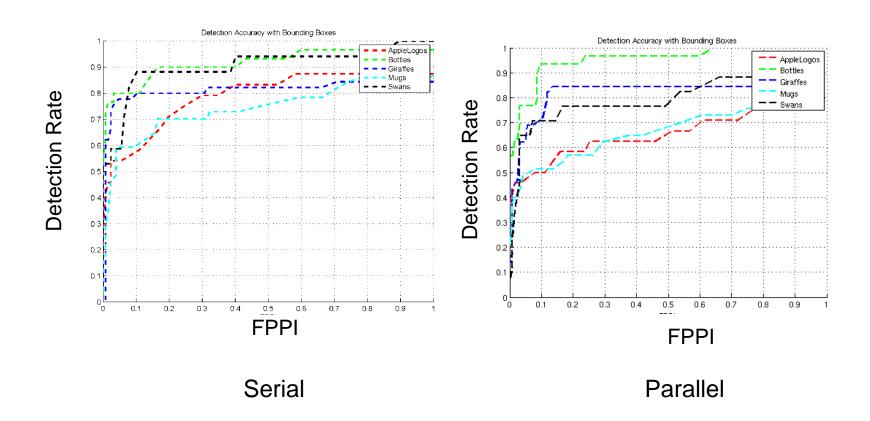
Computati on	Computation time (s)		Speedup
	Serial	Parallel	
Contour	236.7	1.58	150x
Segmentati on	2.27	0.357	6.36x
Feature	7.97	0.065	123x
Hough Voting	84.13	0.779	108x
Total	331.07	2.781	119x

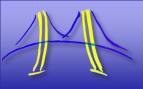
Training

Classification



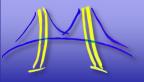
Overall Performance: Detection Accuracy







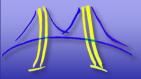
Demo



Conclusion

- Exploring the design space is necessary to achieve high performance on a hardware platform of choice
- Take advantage of domain knowledge is necessary to understand trade-offs among different parallelization methods and achieve peak performance
- We have developed a parallel object recognition system with comparable detection accuracy while achieving 110x-120x times speedup
- Work presented at Workshop on Applications of Computer Vision 2011

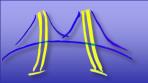
Bor-Yiing Su, Tasneem Brutch, Kurt Keutzer, "A Parallel Region Based Object Recognition System," in *IEEE Workshop on Applications of Computer Vision* (*WACV 2011*), Hawaii, January 2011



Outline

- Design Space
- An Object Recognition System
- Exploring the Design Space of the Object Recognition system

- Future Work
 - Develop Frameworks for Object Recognition Key Computations
 - Integration with the Par Lab stack



Frameworks for Computer Vision

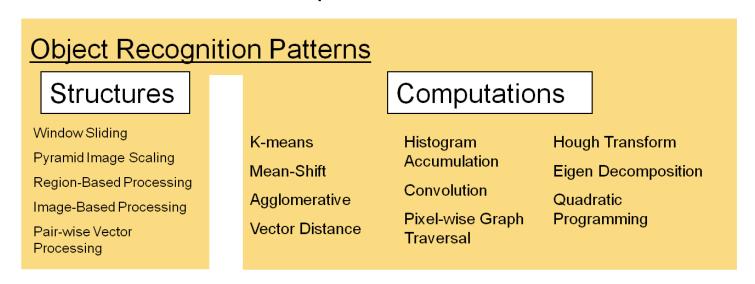
- Design space exploration is a very time consuming procedure
 - We need to develop frameworks to automate design space exploration

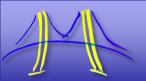
Algorithm Layer

Parallelization Strategy Layer

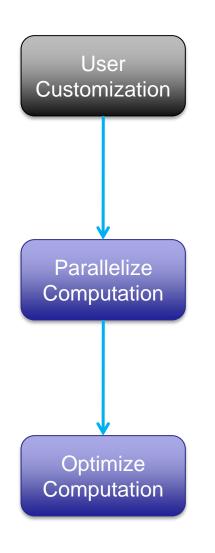
Platform Layer

What frameworks to develop?





Framework of Pair-wise Distance



Defining the distance between two vectors

$$\chi^{2}(x,y) = \frac{1}{2} \sum_{i} \frac{(x_{i} - y_{i})^{2}}{x_{i} + y_{i}}$$

Inner χ^2

Outer χ^2

Transpose Matrix

Blocking Dimension

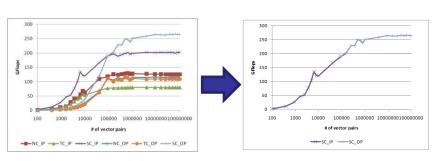
Cache Mechanisms

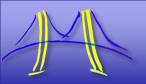
Generating the customized library

Exploring the

design space

automatically





Integration with the Par Lab Stack

- Use the Par Lab stack to develop frameworks for object recognition
 - Use SEJITS from the productivity layer to efficiently express different parallelization strategies
 - Use autotuner from the efficiency layer to explore the design space of the platform layer

Design Space

Par Lab Stack

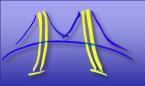
Algorithm Layer

Parallelization Strategy Layer

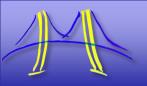
Platform Layer

SEJITS (Productivity Layer)

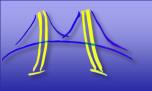
Autotuner (Efficiency Layer)



Questions



Backup Slides



Relationship with Our Pattern Language (OPL)

Design Space Our Pattern Language **Applications** Computational Structural Algorithm Layer **Patterns Patterns** Parallel Algorithm Strategy Patterns **Parallelization** Strategy Layer Implementation Patterns **Execution Patterns Platform Layer** Hardware Features