
1/30

Exploring the Design
Space of a Parallel Object

Recognition System

Bor-Yiing Su, subrian@eecs.berkeley.edu

Tasneem G. Brutch, t.brutch@samsung.com

Kurt Keutzer, keutzer@eecs.berkeley.edu

Parallel Computing Lab,

University of California, Berkeley

2/30

Category of This Work

2

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o

s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

3/30

What’s New?

 Exploring more design space to further optimize key kernels in the

object recognition system

 Resulting in performance boosts:

• Training: from 77.8x to 115x

• Classification: from 72.5x to 119x

 Propose plans of developing frameworks for automating the

procedure of design space exploration on object recognition key

kernels

Bor-Yiing Su, Tasneem Brutch, Kurt Keutzer, "A Parallel Region Based Object Recognition System,"

in IEEE Workshop on Applications of Computer Vision (WACV 2011), Hawaii, January 2011

4/30

Outline

 Design Space

 An Object Recognition System

 Exploring the Design Space of the Object Recognition system

 Future Work

5/30

Three Layers of Design Space

 The design space of parallel applications is composed of three layers

Design Space Explanation Example

Algorithm

Layer

Using different ways to

transform same inputs

into same or similar

outputs

Parallelization

Strategy Layer

Using different

strategies to parallelize

the same algorithm

Platform Layer

Using specific hardware

features to optimize the

same parallelization

strategy

Lanczos
Solver

BFS Graph
Traversal

Blocking
Dimensions

Full

Selective

No with
CW test

Graph
Partition

Parallel Task
Queue

2 x 8

4 x 4

8 x 2

?

?

?

6/30

Statements

1. Exploring the design space is necessary to achieve high

performance on a hardware platform of choice

2. Take advantage of domain knowledge is necessary to understand

trade-offs among different parallelization methods and achieve

peak performance

Algorithm Layer

Parallelization

Strategy Layer

Platform Layer

Design Space

7/30

Outline

 Design Space

 An Object Recognition System

 Exploring the Design Space of the Object Recognition system

 Future Work

8/30

Object Recognition System

Object

Recognition

System

Image Queries Outputs

Bottles
Swans

Trained Categories

Mugs Giraffes

9/30

Targeting Object Recognition System

 C. Gu, J. Lim, P. Arbelǽz, and J. Malik. Recognition using regions.

In CVPR, 2009

Training Flow Classification Flow

10/30

Outline

 Design Space

 An Object Recognition System

 Exploring the Design Space of the Object Recognition system

 Breadth First Search (BFS) Graph Traversal Kernel

 Histogram Kernel

 Pair-wise Distance Kernel

 Overall Performance

 Demo

 Future Work

11/30

BFS Graph Traversal Kernel

 The image segmentation component heavily relies

on the BFS graph traversal kernel

 Image Graph:

 Nodes represent image pixels

 Edges represent neighboring relationships

 BFS graph traversal kernel: propagate information

from some pixels to other pixels

12/30

Exploring the Algorithm Layer

 Direct algorithm: Each source node propagates information to its

neighbors

 Traditional BFS graph traversal algorithm

 Reverse algorithm: Each node checks whether it can be updated by

one or more neighboring nodes

 Structured grid computation

13/30

Exploring the

Parallelization Strategy Layer

 Two strategies can be used to parallelize the traditional BFS graph

traversal algorithm

 Graph partition

 Parallel task queue

...

Graph Partition Task Queue

14/30

Associating Design Space Exploration

with Input Data Properties

 Explored Design Space

 Parallel Task queue on Intel

Core i7 using OpenMP with

8 threads

 Graph partition on Intel

Core i7 using OpenMP with

8 threads

 Structured grid on Nvidia

GTX 480

Maximum Traversal Distance

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Conclusion:

• Use the structured grid

method on a GPU in our

system

15/30

Histogram Kernel

 Each image region is represented by its

contour features

 The contour feature of a region is represented

by a 128-bin histogram

16/30

Exploring the Algorithm Layer

 Data to bins algorithm:

 Each data point atomically accumulate itself into the

corresponding histogram bin

 Bins to data algorithm:

 Each bin process its responsible data points

foreach pixel p

 accumulate p into bin b

foreach histogram bin b

 process pixels p1...pn

17/30

Exploring the

Parallelization Strategy Layer

 When dealing with one region, two strategies can be used to

parallelize the bins to data algorithm

 Geometric decomposition: Process each histogram bin in parallel

 Parallel reduction: For a histogram bin, accumulate its

corresponding data points by parallel reduction

Geometric Decomposition Parallel Reduction

 Process each region in parallel

18/30

Associating Design Space Exploration

with Input Data Properties

 Explored Design Space

 Process each region in

parallel on Intel Core i7

using OpenMP with 8

threads

 Geometric decomposition

on Nvidia GTX 480

 Atomic accumulation

algorithm on Nvidia GTX

480

 Parallel reduction on Nvidia

GTX 480

Conclusion:

• Use the parallel reduction

method on a GPU in our

system Region Width

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s
)

19/30

Pair-wise χ2 Distance Kernel

 In both the training stage and the classification

stage, we need to compute the pair-wise

distance between two region sets

 Similar regions have shorter distance

 Different regions have longer distance

 It is a matrix matrix multiplication computation

 Replacing dot product into χ2 distance

Definition of the χ2 distance:

20/30

Exploring the Design Space

 Algorithm Layer

 Inner χ2 distance

 Outer χ2 distance

 Platform Layer

 Cache Mechanisms

 No Cache

 Hardware Controlled

Cache (Texture memory

on GPU)

 Software Controlled

Cache (Shared memory

on GPU)

21/30

Associating Design Space Exploration

with Input Data Properties

 Explored Design Space

 The combination of two

algorithms and three cache

mechanisms on Nvidia GTX

480

Conclusion:

• Use the outer χ2 distance

method with software

controlled cache in the

training stage

• Use the inner χ2 distance

method with software

controlled cache in the

classification stage

22/30

Overall Performance: Speedups

Training Classification

Computati

on

Computation time (s) Speedup

Serial Parallel

Contour 236.7 1.58 150x

Segmentati

on

2.27 0.357 6.36x

Feature 7.97 0.065 123x

Hough

Voting

84.13 0.779 108x

Total 331.07 2.781 119x

Computa

tion

Computation time (s) Speedup

Serial Parallel

Feature 543 15.97 34x

Distance 1732 2.9 597x

Weight 57 1.41 40x

Total 2332 20.28 115x

23/30

Overall Performance:

Detection Accuracy

Serial Parallel

FPPI

D
e
te

c
ti
o
n
 R

a
te

FPPI

D
e
te

c
ti
o
n
 R

a
te

24/30

Demo

25/30

Conclusion

 Exploring the design space is necessary to achieve high

performance on a hardware platform of choice

 Take advantage of domain knowledge is necessary to understand

trade-offs among different parallelization methods and achieve

peak performance

 We have developed a parallel object recognition system with

comparable detection accuracy while achieving 110x-120x times

speedup

 Work presented at Workshop on Applications of Computer Vision

2011

Bor-Yiing Su, Tasneem Brutch, Kurt Keutzer, "A Parallel Region Based Object Recognition System,"

in IEEE Workshop on Applications of Computer Vision (WACV 2011), Hawaii, January 2011

26/30

Outline

 Design Space

 An Object Recognition System

 Exploring the Design Space of the Object Recognition system

 Future Work

 Develop Frameworks for Object Recognition Key Computations

 Integration with the Par Lab stack

27/30

Frameworks for Computer Vision

 Design space exploration is a very time consuming procedure

 We need to develop frameworks to automate design space

exploration

 What frameworks to develop?

28/30

Framework of Pair-wise Distance

User

Customization

Parallelize

Computation

Optimize

Computation

Defining the

distance between

two vectors

Exploring the

design space

automatically

Generating the

customized

library

Inner χ2 Outer χ2

Blocking Dimension

Cache Mechanisms

Transpose Matrix

29/30

Integration with the Par Lab Stack

 Use the Par Lab stack to develop frameworks for object recognition

 Use SEJITS from the productivity layer to efficiently express

different parallelization strategies

 Use autotuner from the efficiency layer to explore the design

space of the platform layer

SEJITS

(Productivity Layer)

Autotuner

(Efficiency Layer)

Design Space Par Lab Stack

30/30

Questions

31/30

Backup Slides

32/30

Relationship with Our Pattern

Language (OPL)

Applications

Structural

Patterns

Computational

Patterns

Parallel Algorithm Strategy Patterns

Implementation Patterns

Execution Patterns

Hardware Features

Algorithm Layer

Parallelization

Strategy Layer

Platform Layer

Our Pattern Language Design Space

