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(L A P A C K) LAPACK (Linear Algebra PACKage) is a

(L -A P -A C -K) library of Fortran 77 subroutines for solving
(L A P A -C -K) the most commonly occurring problems

(L -A P -A -C K) in numerical linear algebra. It consists of

(L A -P -A C K) routines for dense and band matrix operations,
(L -A -P A C  -K)  butis not able to handle sparse operations.

LAPACK was originally developed to replace matrix codes such as LINPACK and EISPACK
by providing a software structure specifically
designed for optimization upon vector,

superscalar, and shared memory processors. | 1 1 1 1)

( a -a a -a)
The subroutines within the software /4 * (p p -p -p)
package are able to handle real and (a -a -a a )
complex datatypes, for both single and E E ﬁ :E ﬁ ;

double precision. Routine names are based
upon a coded system that indicates
the datatype, type of matrix and operation implemented by the given function.

As can be seen within the diagram at right, Scal APACK
LAPACK requires access to a set of

Basic Linear Algebra Subroutines (BLAS)

to run. Often, the BLAS library can optimized
for the target machine via an autotuning
framework such as ATLAS. =  ==ecccfcccdeccnccn=
Another key point is that efficient
execution of LAPACK routines is critical
for the performance of high-level
libraries, such as ScaLAPACK or PBLAS.
Both of these libraries extend matrix

operations into the distributed computing environment.
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The primary objective of this work is to increase the efficiency of
LAPACK's dense matrix LU factorization routine by taking advantage
of any latent bandedness of input matrices.

LAPACK's dense LU factorization routines, xGETRF, are a key component of solving linear

systems of equations. They implement a right-looking blocked algorithm, such that three
major steps are performed:

O Use a Level 2 BLAS operation (xGETF2) to factor the current block panel
(creating L in the figure below)

O Perform a triangular solve to create U
(XTRSM)

O Update the trailing submatrix (the Schur
Complement, in yellow) via A' = A-LU.
This is done in one step via a BLAS 3
matrix multiply (xGEMM).

This block-based organization of the LU
algorithm allows for the use of xGEMM

to perform aggregated updates to the

Schur complement. This allows of O(n"3)
operations to be performed on O(n"2)

data, providing significant potential for
optimization and the majority of computation.

It Is this final step of LAPACK's LU algorithm that has been modified for this work,
to increase performance on a specific type of input matrix.
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To the right are performance results comparing
the vanilla DGETRF (“D” for double precision),

the band solver DGBTRF and the Truncated 4?

Schur update implementation (DGETRF2). '4

The x-axis of the plot represents the percentage _ *°

of diagonals that are occupied by nonzeros. g 3

In other words, the value of 100 represents a E 2.5 :EEE;EE
fully dense matrix. The y-axis represents 2 2 DGETRF
runtime on an Intel Core2Duo laptop running & 15

at 2.4Ghz. DGETRF and DGBTRF results were 1

obtained using Intel's MKL 10.2.3.029 and 05

For known band matrices, the LAPACK band LU factorization routines (xGBTRF) are highly

efficient. However, if a band matrix is input into xGETRF (the dense factorization) many
extraneous flops are performed upon the zero entries. Thus, xGETRF within the current

LAPACK release is not able to implicitly obtain performance improvements from input band
matrices.

Furthermore, utilizing the band routines first require the input matrix to be copied into a band
format which may result in prohibitive memory traffic for very large matrices.

To address the above mentioned problem,
this work presents a modified version of
LAPACK's xGETRF that is able to implicitly

To do this, at each step of the factorization

L and U are checked for trailing blocks of 0
entries (see Figure to left). This checking
process is started from the end of L and U to

the smaller yellow region.

Thus, with the realization we can reduce the size of the xGEMM operation and not perform

flops upon the 0 entries of L and U. We call this “Truncating the Schur Update”.

Schur update truncation promises several advantages over the traditional xGETRF routine:

O The user does not have to be aware of matrix structure to obtain performance benefit

O Schur update truncation incurs little overhead, and does not significantly penalize dense
matrix factorizations

O Performance benefits are obtained without copying the input matrix into a band format

LU Runtime (M=N=3200)

DGETRF2 utilized an ATLAS-tuned BLAS library

(ALTAS 3.9.17).
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From the figure, it can be seen that for band
matrices DGETRF2 scales in a similar manner
to DGBTRF and achieves significant performance

improvement over DGETRF.
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achieve performance benefit from bandedness.

minimize the overhead for non-banded matrices.
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checking for a possible Schur update truncation.

The performance results on the left compare
DGETRF/DGETRF2 computation times for
dense matrix factorizations. As one can see,
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Looking at the Figure, one can see that the updates
effect upon the trailing submatrix is now limited to

The figure on the left attempts to address possible
concern about a performance penalty caused by

—
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MKL BLAS outperforms the ATLAS BLAS, or MKL's
DGETRF code includes additional optimization.

While DGETRF2 results in similar performance
to the band LU (DGBTRF) for bandwidths around
10% of the available width, it suffers significantly
upon matrices with very narrow bandwidth.

LU Runtime (M=N=3200)

On the left, it is shown that DGBTRF computes
much faster upon small bandwidth matrices than
DGETRF2 (sometimes over an order of
magnitude). Thus, the truncated Schur optimization
does not make DGBTRF obsolete.

—DGETRF2
DGBTRF

It is also worth noting that the band matrix format
results in @ much smaller memory footprint for low-
bandwidth matrices.
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One limitation of LAPACK's band solvers is that Irreqular Band Matrix (M=N=3200)
they can only optimize to the extent of the ° — ' ' -
largest bandwidths in the matrix. If a matrix has
identical bandwidths for each row and column,
this approach is optimal. However, for a matrix tom |
similar to right, the band solver must compute

as if the bandwidth of the matrix is equal to Y
the larger red lines. This results in the
computation of a large number of extraneous
flops. 2000

1500 -

2 -

We call matrices such as those on the right
“irregular banded”, as the bandwidth varies
across rows and columns.
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On the other hand, as DGETRF2 computes
truncated Schur updates at every step of the
factorization, the number of extraneous flops
is significantly reduced.
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_— 'EESIE? In the figure to left, one can see that DGETRF2
is able to outperform DGBTRF on an irregular
matrix of size 3200x3200 when the maximum
bandwidth is greater than 900. The matrices used
for this test were of similar format to the above

figure.
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Several future goals have been set for this work:

O Complete verification of code running upon complex data, which is currently not
working due to link errors

O Survey literature and experts for examples of real-world irregular band matrices that
could obtain significant speedup using DGETRF2

O Perform significant testing in preparation for the integration of xGETRF2 into the
LAPACK distribution

DGETRF2 runtime suffers a small performance penalty
over MKL's DGETRF for dense matrices. So, either the

O Explore further performance improvements to LAPACK that reduce the amount of
knowledge needed by the user about input matrices

This presents a strong argument for the truncated Schur
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competition with MKL).

operation to be integrated into the xGETRF subroutines
(with perhaps some additional optimizations for closer
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