
Manycore Application Development Challenges

Performance Portability Doesn’t Exist

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Software Knows Best: A Case for Hardware Transparency and
Measurability

Sarah Bird, Kaushik Datta, Karl Fuerlinger, Archana Ganapathi, Shoaib Kamil, Rajesh Nishtala,
 David Skinner, Andrew Waterman, Samuel Williams, Krste Asanovic, and David Patterson

slbird@eecs.berkeley.edu

Future of Applications

Potential in Other Areas

P A R A L L E L C O M P U T I N G L A B O R A T O R Y

Our Implementation using RAMP

SHOT

Comm and Comp!

Conclusions

Isn’t this a lot of hardware?

Adaptive Stack

Category Metric
Communication Cache traffic: L1I$, L1D$,

L2$, ...
Cache traffic by category:
speculative, compulsory,
capacity miss, conflict
miss, write allocate, write
back, coherency
DRAM traffic
I/O traffic
% Utilization: cache
controllers, memory
controllers, I/O controllers

 Computation Instructions retired
Instructions by type:
floating point, integer,
vector, load, store
% Utilization: instructions
retired per cycle

Energy Energy per task for all
components
Time spent in each power
state per component

  Operating System
  Track ALL resource usage of applications in different phases
  Compute performance-bandwidth-energy curves on the fly
  Adjust resource allocation for better efficiency

  Applications
  Schedule threads to avoid contention
  Adjust to execution environment

  Select different versions of autotuned code
  Reduce work to meet deadlines

  Communication
  Interconnect behavior impacts

performance
  Access to DRAM and I/O"
  Communication between

cores"
  Measure traffic on every edge

  Source to Sink"
  Break traffic into causes

  Computation
  Efficient execution of each core

is still important
  Affects Power/Energy
  Impacts overall system

performance

  Diverse Platforms
  “The Laptop/Handheld is the Computer”
  “The Datacenter is the Computer”

  Split between the Client/Cloud
  Where to split varies from device to device
  Offline mode

  Constantly Changing Resource Behavior
  Other applications running simultaneously

  Efficiency is Important
  Battery life

  User Driven Deadlines

  Create a standard performance
measurement system
  Application level metrics
  Available on all architectures
  Consistent access interface
  Tracks information per task

  Atomically Snapshot Set of
Counters"
  Cores have Individual DVFS"

  Use a Global Realtime Clock
(GRTC)"

  Much slower than cores"
  Fast enough for apps "
  ~100 MHz"

  Apps and OS both need access"
  OS and User Level Latches"

  Fast Save and Restore"
  Context switch"

  Hypervisors"
  Low Access Overheads"

Energy!
  Energy information can affect

some non-obvious tradeoffs for
applications
  How much processing to do

to compress data before
sending it to the cloud?

  If an app doesn’t scale well
do we give it more cores?

  Attribute all energy usage to a
given component

  Shared resources must split
usage by apps

  We have more transistors available
  The counters can be made low power and small

  Could Approximate
  The hardware cost isn’t very high

  SiCortex has 6 counters per core and over 3900 events
  Only 0.05% of the Chip Area

  The real cost is verification
  It’s worth the cost

  Productive programming
  Efficient execution

  Research Accelerator for Multiple
Processors

  Manycore emulation on FPGAs
  Using BEE3 boards

  Using RAMP to implement SHOT
  Table to the lef100t shows the

counters we have currently
implemented"

  We are working on showing the
benefit of the system by
implementing an adaptive stack

  Profile application resource
usage"

  Dynamically adjust allocation
of cores for lower energy"

Hardware Performance Data:"
Cache Misses From Conflict"
Page Faults"
Average Load Latency"

Hardware Performance Data: "
Interconnect Bandwidth"
I/O Latency"

  Performance is important and performance portability doesn’t exist"
  Applications must be optimized for performance on each platform"
  Itʼs too expensive to hand optimize every application for every platform"
  Environment changes depending on other applications running concurrently"
  Must have an adaptive stack that can use runtime information to adjust

applications"
  Scheduling Experiments show the potential of using SHOT information in the OS

  Using SHOT is much lower energy that time-multiplexing or other baslines
  It’s within 5% of the optimal space partition every time

  Complex mobile applications
  Interactive

  Responsive
  Realtime

  High performance
  Low battery usage

Contextual Hints

Candidate
Results

1000’s of images

User Hints

Comparison
Engine

Query by example

Name Whisperer Application"

!"!!#

!"$!#

%"!!#

%"$!#

&"!!#

&"$!#

'"!!#

'"$!#

()*+,-+./)0-#*12#
3450*6+)7-405#

(/2845*+,#*12#
3450*6+)7-405#

()*+,-+./)0-#*12#
9)7:2*1:6*40#

;//<#=:+5/#*12#
>*12/6#?++0--#=:+5/#

!"
#$
%&
'()

*$
+
,-
./
#0

'1*
'2
34

+
,-
'5
3,

4
,-
'6
,$
4
4
*"

7''

(0-4#3<*@*)#A*5@@/1:1B#

C:60#=7)@<)0D:1B#

E:F:20#4.0#=*+.:10#:1#G*)H#

A502:+@/1#I:4.#;:10*5#=/20)#

A502:+@/1#I:4.#J7*25*@+#=/20)#

K/5-4#3<*@*)#A*5@@/1:1B#

Naive Clovertown Nehalem Barcelona BG/P Niagara2

Clovertown

Nehalem

Barcelona

BG/P

Niagara2

Best Parameter Configuration

P
la

tf
o

rm

!!"#$%&'(&)%*$+',-./*&$#%'#0'1+/&0#.2'3)4&5

0.52

0.17

0.16

0.23

0.12

1.00

0.43

0.93

0.63

0.07

0.94

1.00

0.86

0.75

0.32

0.95

0.44

1.00

0.83

0.08

0.42

0.23

0.19

1.00

0.04

0.78

0.59

0.40

0.51

1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Naive Clovertown Nehalem Barcelona BG/P Niagara2

Clovertown

Nehalem

Barcelona

BG/P

Niagara2

Best Parameter Configuration

P
la

tf
o
rm

!"!#$%&'()'*&+%,(-./0+'%$&($1(2,0'1$/3(4*5'6

0.52

0.28

0.25

0.35

0.55

1.00

0.37

0.75

0.40

0.05

0.85

1.00

0.74

0.78

0.23

0.97

0.43

1.00

0.54

0.05

0.28

0.17

0.24

1.00

0.04

0.79

0.61

0.65

0.55

1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scheduling Experiments

  On Nigara2 untuned code ran
faster than code tuned for any other
computer

  Running Blue Gene Code on
Nigara2 resulted in a 25x slowdown

  For perf./energy, applications must be
tuned for each individual platform"

  We canʼt hand tune every application
for every machine so it must be
automated"

  Using SHOT on RAMP
  Running ROS
  PARSEC Benchmarks

  SHOT data collected and
used to make a simple
energy model

  Use model for scheduling
decisions in ROS

  With SHOT we are within
5% of optimal every time"

  We tuned a 7-point and a 27-point
stencil application for 5 platforms

  We then ran each tuned application
and an untuned application on all of the
platforms
  Typical Slowdown was between

1.5x and 3x
  Code Tuned for Blue Gene always

ran slower than untuned code

  Standardized = Portable Software
  Autotuning

  Prune search space
  ML + Autotuning techniques (K. Datta and A. Ganapathi)

  Modeling
  Performance

  Automatically generate roofline model (S. Williams and A. Waterman)"
  Energy

  Distributed and Cloud Computing
  Collect hardware performance data on a per request basis

  Integrate with a system like X-Trace"
  Predict performance of Hadoop workloads using ML (S. Bird and A. Ganapathi)

  Feedback to hardware designers

