
Manycore Application Development Challenges

Performance Portability Doesn’t Exist

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Software Knows Best: A Case for Hardware Transparency and
Measurability

Sarah Bird, Kaushik Datta, Karl Fuerlinger, Archana Ganapathi, Shoaib Kamil, Rajesh Nishtala,
 David Skinner, Andrew Waterman, Samuel Williams, Krste Asanovic, and David Patterson

slbird@eecs.berkeley.edu

Future of Applications

Potential in Other Areas

P A R A L L E L C O M P U T I N G L A B O R A T O R Y

Our Implementation using RAMP

SHOT

Comm and Comp!

Conclusions

Isn’t this a lot of hardware?

Adaptive Stack

Category Metric
Communication Cache traffic: L1I$, L1D$,

L2$, ...
Cache traffic by category:
speculative, compulsory,
capacity miss, conflict
miss, write allocate, write
back, coherency
DRAM traffic
I/O traffic
% Utilization: cache
controllers, memory
controllers, I/O controllers

 Computation Instructions retired
Instructions by type:
floating point, integer,
vector, load, store
% Utilization: instructions
retired per cycle

Energy Energy per task for all
components
Time spent in each power
state per component

  Operating System
  Track ALL resource usage of applications in different phases
  Compute performance-bandwidth-energy curves on the fly
  Adjust resource allocation for better efficiency

  Applications
  Schedule threads to avoid contention
  Adjust to execution environment

  Select different versions of autotuned code
  Reduce work to meet deadlines

  Communication
  Interconnect behavior impacts

performance
  Access to DRAM and I/O"
  Communication between

cores"
  Measure traffic on every edge

  Source to Sink"
  Break traffic into causes

  Computation
  Efficient execution of each core

is still important
  Affects Power/Energy
  Impacts overall system

performance

  Diverse Platforms
  “The Laptop/Handheld is the Computer”
  “The Datacenter is the Computer”

  Split between the Client/Cloud
  Where to split varies from device to device
  Offline mode

  Constantly Changing Resource Behavior
  Other applications running simultaneously

  Efficiency is Important
  Battery life

  User Driven Deadlines

  Create a standard performance
measurement system
  Application level metrics
  Available on all architectures
  Consistent access interface
  Tracks information per task

  Atomically Snapshot Set of
Counters"
  Cores have Individual DVFS"

  Use a Global Realtime Clock
(GRTC)"

  Much slower than cores"
  Fast enough for apps "
  ~100 MHz"

  Apps and OS both need access"
  OS and User Level Latches"

  Fast Save and Restore"
  Context switch"

  Hypervisors"
  Low Access Overheads"

Energy!
  Energy information can affect

some non-obvious tradeoffs for
applications
  How much processing to do

to compress data before
sending it to the cloud?

  If an app doesn’t scale well
do we give it more cores?

  Attribute all energy usage to a
given component

  Shared resources must split
usage by apps

  We have more transistors available
  The counters can be made low power and small

  Could Approximate
  The hardware cost isn’t very high

  SiCortex has 6 counters per core and over 3900 events
  Only 0.05% of the Chip Area

  The real cost is verification
  It’s worth the cost

  Productive programming
  Efficient execution

  Research Accelerator for Multiple
Processors

  Manycore emulation on FPGAs
  Using BEE3 boards

  Using RAMP to implement SHOT
  Table to the lef100t shows the

counters we have currently
implemented"

  We are working on showing the
benefit of the system by
implementing an adaptive stack

  Profile application resource
usage"

  Dynamically adjust allocation
of cores for lower energy"

Hardware Performance Data:"
Cache Misses From Conflict"
Page Faults"
Average Load Latency"

Hardware Performance Data: "
Interconnect Bandwidth"
I/O Latency"

  Performance is important and performance portability doesn’t exist"
  Applications must be optimized for performance on each platform"
  Itʼs too expensive to hand optimize every application for every platform"
  Environment changes depending on other applications running concurrently"
  Must have an adaptive stack that can use runtime information to adjust

applications"
  Scheduling Experiments show the potential of using SHOT information in the OS

  Using SHOT is much lower energy that time-multiplexing or other baslines
  It’s within 5% of the optimal space partition every time

  Complex mobile applications
  Interactive

  Responsive
  Realtime

  High performance
  Low battery usage

Contextual Hints

Candidate
Results

1000’s of images

User Hints

Comparison
Engine

Query by example

Name Whisperer Application"

!"!!#

!"$!#

%"!!#

%"$!#

&"!!#

&"$!#

'"!!#

'"$!#

()*+,-+./)0-#*12#
3450*6+)7-405#

(/2845*+,#*12#
3450*6+)7-405#

()*+,-+./)0-#*12#
9)7:2*1:6*40#

;//<#=:+5/#*12#
>*12/6#?++0--#=:+5/#

!"
#$
%&
'()

*$
+
,-
./
#0

'1*
'2
34

+
,-
'5
3,

4
,-
'6
,$
4
4
*"

7''

(0-4#3<*@*)#A*5@@/1:1B#

C:60#=7)@<)0D:1B#

E:F:20#4.0#=*+.:10#:1#G*)H#

A502:+@/1#I:4.#;:10*5#=/20)#

A502:+@/1#I:4.#J7*25*@+#=/20)#

K/5-4#3<*@*)#A*5@@/1:1B#

Naive Clovertown Nehalem Barcelona BG/P Niagara2

Clovertown

Nehalem

Barcelona

BG/P

Niagara2

Best Parameter Configuration

P
la

tf
o

rm

!!"#$%&'(&)%*$+',-./*&$#%'#0'1+/&0#.2'3)4&5

0.52

0.17

0.16

0.23

0.12

1.00

0.43

0.93

0.63

0.07

0.94

1.00

0.86

0.75

0.32

0.95

0.44

1.00

0.83

0.08

0.42

0.23

0.19

1.00

0.04

0.78

0.59

0.40

0.51

1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Naive Clovertown Nehalem Barcelona BG/P Niagara2

Clovertown

Nehalem

Barcelona

BG/P

Niagara2

Best Parameter Configuration

P
la

tf
o
rm

!"!#$%&'()'*&+%,(-./0+'%$&($1(2,0'1$/3(4*5'6

0.52

0.28

0.25

0.35

0.55

1.00

0.37

0.75

0.40

0.05

0.85

1.00

0.74

0.78

0.23

0.97

0.43

1.00

0.54

0.05

0.28

0.17

0.24

1.00

0.04

0.79

0.61

0.65

0.55

1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scheduling Experiments

  On Nigara2 untuned code ran
faster than code tuned for any other
computer

  Running Blue Gene Code on
Nigara2 resulted in a 25x slowdown

  For perf./energy, applications must be
tuned for each individual platform"

  We canʼt hand tune every application
for every machine so it must be
automated"

  Using SHOT on RAMP
  Running ROS
  PARSEC Benchmarks

  SHOT data collected and
used to make a simple
energy model

  Use model for scheduling
decisions in ROS

  With SHOT we are within
5% of optimal every time"

  We tuned a 7-point and a 27-point
stencil application for 5 platforms

  We then ran each tuned application
and an untuned application on all of the
platforms
  Typical Slowdown was between

1.5x and 3x
  Code Tuned for Blue Gene always

ran slower than untuned code

  Standardized = Portable Software
  Autotuning

  Prune search space
  ML + Autotuning techniques (K. Datta and A. Ganapathi)

  Modeling
  Performance

  Automatically generate roofline model (S. Williams and A. Waterman)"
  Energy

  Distributed and Cloud Computing
  Collect hardware performance data on a per request basis

  Integrate with a system like X-Trace"
  Predict performance of Hadoop workloads using ML (S. Bird and A. Ganapathi)

  Feedback to hardware designers

