

Communication-Avoiding QR Decomposition for GPUs

Michael Anderson, Grey Ballard, James Demmel, Kurt Keutzer University of California, Berkeley

Main Idea

 Reducing communication between GPU and DRAM can give us an order of magnitude speedup

Turn a bandwidth-bound problem into a compute-bound problem

• Communication-Avoiding QR¹ is a recent algorithm for solving a QR decomposition which is optimal with regard to the amount of communication performed

· This allows us to achieve higher computational intensity, requiring less memory traffic.

 CAQR performs exceptionally well on the GPU, especially for the challenging case of tall-skinny matrices.

1: J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Implementing Communication-Optimal Parallel and Sequential QR Factorizations. Arxiv preprint arXiv:0809.2407, 2008

Traditional Householder QR

· From left to right, tall panel factorizations generate Householder vectors

• Matrix-multiply can be used to apply the Householder vectors to the rest of the matrix

· For wide matrices most of the time is spent in matrixmultiply

FAST!

· For skinny matrices, most time is spent in the BLAS2 panel factorization

SLOW!

· Main GPU optimizations:

16k

8k

2k

64

Measurements on

nvidia C2050

of Rows

- Avoiding shared memory and using the register file to store the matrix whenever possible
- Tuning the block width to trade some extra work for a reduction in bandwidth

Note: Q is stored differently than the standard approach

vs MKL (2 Nehalems)

vs MAGMA

16k

#

< 1x (slowdown)

 CAQR performs best for skinny matrices. For the square case, we are not able to use SGEMM so traditional approaches perform

vs CULA

16k

#

better. • For very tall-skinny matrices, such as our

video matrix, CAQR achieves an order of magnitude speedup.

"Communication-Avoiding QR for GPUs" Anderson, Ballard, Demmel, Keutzer IEEE International Parallel & Distributed Processing Symposium, 2011