Communication-Avoiding QR Decomposition for GPUs

Michael Anderson, Grey Ballard, James Demmel, Kurt Keutzer
University of California, Berkeley

Main Idea
- Reducing communication between GPU and DRAM can give us an order of magnitude speedup
 - Turn a bandwidth-bound problem into a compute-bound problem
- Communication-Avoiding QR is a recent algorithm for solving a QR decomposition which is optimal with regard to the amount of communication performed
 - This allows us to achieve higher computational intensity, requiring less memory traffic.
- CAQR performs exceptionally well on the GPU, especially for the challenging case of tall-skinny matrices.

Traditional Householder QR
- From left to right, tall panel factorizations generate Householder vectors
 - Matrix-multiply can be used to apply the Householder vectors to the rest of the matrix
 - For wide matrices most of the time is spent in matrix-multiply
 - FAST!
 - For skinny matrices, most time is spent in the BLAS2 panel factorization
 - SLOW!

Example Application: Robust PCA
- Decompose a surveillance video into a low rank component and a sparse component:
 \[M = L + S \]
 - Video = tall-skinny matrix:
 - Main computation is an SVD of the video matrix
 - Use QR as a first step for SVD of a tall-skinny matrix
 - Quality of output is dependent on the number of QRs performed

Performance
- CAQR performs best for skinny matrices. For the square case, we are not able to use SGEMM so traditional approaches perform better.
 - For very tall-skinny matrices, such as our video matrix, CAQR achieves an order of magnitude speedup.

Communications-Avoiding QR
- Main GPU optimizations:
 - Avoiding shared memory and using the register file to store the matrix whenever possible
 - Tuning the block width to trade some extra work for a reduction in bandwidth
 - Note: Q is stored differently than the standard approach
- Small QR decompositions fit in cache
- Eliminate triangles using a QR reduction tree
- Blocked trailing matrix updates also fit in cache
- Computational intensity > 16 FLOPS/Byte

Example Application:
Robust PCA

Integrated Display of Performance

Measurements on misPis C2500
- >8x
- 4x
- 2x
- 1x
- < 1x (slowdown)

"Communication-Avoiding QR for GPUs" Anderson, Ballard, Demmel, Keutzer IEEE International Parallel & Distributed Processing Symposium, 2011