/\ ROS
7 TT=X_ Barret Rhoden, Kevin Klues, David Zhu,

Paul Pearce, Andrew Waterman, Eric Brewer . >
Par Lab, CS Division, University of California at Berkeley Kevin Klues Paul Pearce Barret Rhoden David Zhu A. Waterman

A Scalable Operating System For Parallel Applications On Many-core Architectures

0 GOAL: Explicitly support parallel applications while Traditional 1:1 Process Many-core Process 0 Coarse-Grained Cores
improving kernel scalability b = O Used for parallel computations
g g g g g requiring predictable performance
O Many-core Process (MCP) g o O Time-sliced at coarse-granularity
O No longer a single thread in a virtual processor | -=----------"-—-—-————-- P i 0 Granted to apps running as MCPs
O Multiple cores ‘owned’ by a single process g g g Scheduler - a1 — -0 Low-Latency Cores
o All cores gang scheduled Sched | | Sched + Sched Scheduler O Handle time-critical events out of band
O Information exposed up, requests sent down / Ps O Always runnable, not gang-scheduled
Core 0| |Core 1 } Core n Core 0 || Core 1 } Core n c O Time-sliced at fine-granularity
O Asymmetric Use of Cores — = O Examples: Ul events, TCP ACKs, etc.
O Low-Latency vs. Coarse-Grained Cores 0 More scalable than traditional process models L o Asynchronous Remote Calls (ARCs)
o Asynchronous Remote Calls (ARCs) 0 No mapping of user-level threads to kernel threads 9 0 System calls serviced asynchronously

O Kernel control path on a limited number of cores (the kernel Is completely event-based) N = - on Low Latency Cores

O No per-core run queues 0 Increase per core cache locality
0 Resource Provisioning O Proendes richer s_etfof respurcebguarantees to processglg | P, P, 0 Decrease cross core lock contention
O Provisions setup before allocation takes place E M)gjlg:emrggee')? ﬁgﬁ??gogeztg?éf%lhsgignrreessoouurz;ceesu“ 'zation _ O Limit kernel interference with apps
O Increases isolation between processes o AII cores aranted tg an M(C_I)P e 0ana seheduled 0 1 ; 2 3 4 5 6 7 0O Smallsetofcores control the system
O Enables predictable application performance N J gang Is (ARCs) ol CG Cores O Manages what processes run where
O Allows the system to utilize unused resources 0 unexpected interrupts or blocking system calls () O No need for per core run queues

Resource Provisioning Current Implementation Preliminary Results

c . *ROS |
cel 2SS 1.01— 1.01—
@ 5 ® POSIX System Calls Ap
= ps ,
c§> S v (PARSEC Benchmarks: Fluidanimate, x264) 100 S o/ oM
‘c < e VSEIVEr ® Exokernel = ©
— O Solaris Zones € ol €099
o) _*5 — Glibc » Thread Local Storage (TLS) € Custom Pthread Library 5999 Ihe
1= ® Para-virtualized VMs (Xen) v t \ o &
- ()
o 9 _ ' i i Asynchronous Remote Calls (ARCs) Vcore Library 20.98 >0.98
g e User Mode Linux e FUlly Virtualized VMs with | 2 2
<C LW performance enhancements vy l J V 2 [z
®Java VM o Fully Virtualized VMs — _ 0.97| | | 0097 . .
Syscall Interface Notification / Preemption [€—> MCP Management e—e Dedicated Cores e—e Without Page Coloring
¢ Apache VHost (Qemu, KVM, VMW&FG) =—a Per Core Run Queues =—a With Page Coloring
Similarities to a real machine ‘l' ‘l' 0.96 55 10 15 20 25 30 OI\'I% 0 s 10 A vertan,
. . Number o ores umper o ores use y Interrering rrocess o overiap
. Kernel Messaging Slab Memory Allocator Page Coloring
O Resources provisioned to MCPs based on future needs | (Cache Partitioning)
O Resources allocated to MCPs based on immediate needs l l’
O Processes scheduled based on meeting resource guarantees (QoS) v v 35
O Resource guarantees enforced either in hardware or in software > Appserver Multi-Architecture Support S
(Used for File I/0) (x86, SPARC V8) S
| = 2.5 f
°T i v £ 20 ~
64 Network Interface Card (NIC) € v & o | ,
(ne2k, rl8168, e1000) v 15 u‘,a il *
-] ! b S ‘ |
(@]
Time 8 56 o 05 | |
64-core Quad-socket 2 Y
D Jum— 64-core RAMP £ :
o | PO, P1 P X7560 Nehalem-EX = 0.0
3 56 2 _05 e—e Dedicated Cores
g | | == While (1) Interferer
< -1.0% ‘ ‘ ‘ '
34 * 0 20 40 60 80 100
! PO, P1 - il Frame Number

