
Vector Fragment Reconvergence

Alex Bishara, Richard Xia

Overview

Memory Coalescer

Improving Energy Efficiency of Data Irregular Codes in a Vector-Thread Architecture

The vector-thread (VT) architecture can perform poorly on
certain data-irregular codes.

We examined two hardware additions that significantly
improve performance on certain classes of irregular code.

When vector fragments diverge, they stay divergent until
the end of the vector fetch block.

This results in poor performance in common control
sequences such as if statements within loops.

00: loop:
04: op.0
08: beqz skip
0c: op.1
10: op.2
14: skip:
18: op.3
1c: op.4
20: j loop

The pending vector reconvergence buffer (PVFB)
stores and retrieves the PC and microthread masks of
each fragment. The vector unit can push and pop
from the PVFB, which normally uses a FIFO policy.

We implemented two variations of a special hardware
stack to allow inserted fragments to reconverge if PCs
match.

When using microthread loads and stores, cache conflicts
can degrade performance on certain common codes.

Sequential memory accesses of small strides can have
cache conflicts so badly that they allow only one memory
access per cycle.

Our memory coalescer allows a single memory request to
satisfy memory requests of multiple lanes simultaneously.
The vector memory unit dynamically compares memory
addresses and stores word/halfword/byte select
information in an extra buffer.

Memory Request Issue
Writeback Control

VMU

From Lanes To Lanes

To Memory From Memory

Addresses, memory op type

Memory Requests

Data

Lane 0 Lane 1 Lane 2 Lane 3Lane 0 Lane 1 Lane 2 Lane 3

Memory Coalescer

Buffer index

ROB
Byte

Select
Buffer

ROB
Byte

Select
Buffer

ROB
Byte

Select
Buffer

ROB
Byte

Select
Buffer

Byte Select

index byte_sel valid0 index0 valid1 index1 valid2 index2 valid3 index3Non-coalesced Tag

8 bits 24 bits

Coalesced Tag

Although the special stacks are much more complex to
implement, they incur no additional area cost and greatly
improve the performance of divergent codes.

Previously, irregular codes would perform much worse
on a VT machine than a comparable scalar machine.
Our implementation allows VT to run these codes even
better than scalar machines.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Norm. Tasks / Sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
. E

ne
rg

y
/ T

as
k

vt-standard
vt-coalesced

Vector-Vector Addition

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Norm. Tasks / Sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
. E

ne
rg

y
/ T

as
k

vt-standard
vt-coalesced

Masked Filter

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Norm. Tasks / Sec

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
. E

ne
rg

y
/ T

as
k

scalar
queue
queue-dt
stack
stack-dt
stack1
stack1-dt

Binary Search

0.4 0.6 0.8 1.0 1.2 1.4
Norm. Tasks / Sec

1.0

1.5

2.0

2.5

N
or

m
. E

ne
rg

y
/ T

as
k

scalar
queue
queue-dt
stack
stack-dt
stack1
stack1-dt

String Search The changes to the vector unit add an insignificant
amount of area.

Area Comparison of Memory Coalescing

By removing cache conflicts, performance can improve
by as much as 55%, depending on the severity of the
original cache conflicts.

(a) sample code (b) execution diagram

Area Comparison of Vector Fragment Reconvergence

