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Abstract. Reuse of existing libraries simplifies software development
efforts. However, these libraries are often complex and reusing the APIs
in the libraries involves a steep learning curve. A programmer often uses
a search engine such as Google to discover code snippets involving library
usage to perform a common task. A problem with search engines is that
they return many pages that a programmer has to manually mine to
discover the desired code. Recent research efforts have tried to address
this problem by automating the generation of code snippets from user
queries. However, these queries need to have type information and there-
fore require the user to have a partial knowledge of the APIs.
We propose a novel code search technique, called SNIFF, which retains
the flexibility of performing code search in plain English, while obtaining
a small set of relevant code snippets to perform the desired task. Our
technique is based on the observation that the library methods that a
user code calls are often well-documented. We use the documentation
of the library methods to add plain English meaning to an otherwise
undocumented user code. The annotated user code is then indexed for
the purpose of free-form query search. Another novel contribution of our
technique is that we take a type-based intersection of the candidate code
snippets obtained from a query search to generate a set of small and
highly relevant code snippets.
We have implemented SNIFF for Java and have performed evaluations
and user studies to demonstrate the utility of SNIFF. Our evaluations
show that SNIFF performed better than most of the existing online
search engines as well as related tools.

1 Introduction

Java’s evolution and growth over the years has greatly increased the number
of APIs available at a programmer’s disposal. For example, the Java Standard
Library, J2SE, contains thousands of classes and more than 20,000 methods [14].
The Java APIs are often designed in a modular manner using small composable
units. A programmer needs to combine these APIs using some (often compli-
cated) sequence of classes and method calls, to correctly use a Java library. This
fact, compounded with the sheer number of APIs, makes it difficult for a pro-
grammer to discover what APIs he/she wants and how to use those APIs to
perform a given programming task. For example, consider a programmer who
wants to read from a file and is unfamiliar with the java.io package. With-
out prior knowledge about the java.io package, the programmer will not only



find it difficult to discover what classes he/she needs to use, but also to figure
out how to use the methods in those classes to read from a file. Even if the
programmer manages to write code to read from a file after digging into the
java.io API, the code written may not be efficient—the code may only use the
class java.io.FileReader and ignore the use of the java.io.BufferedReader
class, which is required for an efficient implementation.

In order to solve the above problem, a programmer generally resorts to one
of the following two techniques. He/she might try to explore existing code bases
and their documentations, and search for code snippets which perform the de-
sired programming task using some APIs. This “mining” effort becomes quite
tedious because existing code bases are often very large, making manual search
impossible. Moreover, these code bases may not be well-documented making it
difficult to locate the relevant code snippets. Some recent tools, such as Prospec-
tor [14], have tried to automate the search process; however, they assume that
the programmer knows what classes and object types he/she wants to use. This
may not be a realistic assumption if the programmer is unfamiliar with the class
names.

Alternately, a programmer might search the web using some search engine
such as Google. An advantage of using a search engine is that the programmer
posts his/her query in plain English (free-form), such as “read from a file in Java”
without any prior knowledge about the required packages, classes, or methods.
However, the results returned by the search engines contain relevant code inter-
spersed with irrelevant code and plain English text from the webpage. The pro-
grammer needs to determine, potentially involving further searches, what part of
the returned code snippet is relevant. More recently, PARSEWeb [20] has tried
to combine results from web searches with Prospector to improve the quality
of search. However, the tool suffers from the same problem as Prospector—the
programmer needs to know what classes and object types he/she has to use.

We propose a novel code search technique called Sniff12, which retains the
flexibility of performing a search in English, while obtaining small and relevant
code snippets required to perform the desired task. In Sniff, a programmer
issues a query expressing the programming task in English and Sniff returns a
small set of relevant code snippets. For example, Sniff returns the code snippet
in Table 1 for the query “read a line of text from a file”.

FileReader fr = new FileReader(String fileName);

BufferedReader br = new BufferedReader(FileReader fr);

String line = br.readLine()

Table 1. Original code with no useful comments

The key idea of Sniff is to combine API documentation with publicly avail-
able Java code. Specifically, Sniff takes a large amount of Java source code
already available on the web and annotates it by appending each statement con-
taining a method call with the method’s Javadoc description (if available). An-

1 Sniff stands for SNIppet for Free-Form queries
2 It “sniffs” the code database for the relevant code



notation allows Sniff to add meaningful comments to otherwise uncommented
Java files. Sniff indexes these annotated Java files in a database. A query to
Sniff looks up this database and collects code chunks that match the query.
Sniff then performs a type-based intersection of these code chunks to retain
the most relevant and common part of the code chunks. Sniff also ranks these
pruned chunks using their relevance to the query. We have defined one criterion
for the relevance of the code snippets: the frequency of their occurrence in the
indexed code base. Ranking in Sniff is based on this measure of relevance.

Sniff has several advantages:

1. Sniff allows free-form English queries about a programming task. This elim-
inates the need to know the appropriate APIs beforehand.

2. Sniff facilitates more effective code reuse by eliminating the requirement
of much prior knowledge about APIs. Code reuse increases the performance
and reliability of the new code.

3. Since Sniff constructs the most relevant code snippet by performing type-
based intersection of several Java code chunks, we get relatively mature and
correct code.

We have developed an eclipse plugin for Sniff and performed a user study
that found that programmers could solve the reuse problems 40% faster with
Sniff than with other tools. We have also compared the performance of Sniff
with online code search engines [5, 12, 3] on a set of user queries posted on a Java
developer’s forum [8]. Our experiments show that Sniff returned the most rele-
vant code snippet as the top ranked result for about 88% of queries, whereas the
online search engines returned the top result for about 50% of queries. Moreover,
these results were buried inside hyperlinked source files and required substantial
manual inspection to discover the exact snippets. We have also evaluated the
importance of our intersection algorithm for the relevance of the snippets. Our
experiments show that intersection helps in effective pruning and better ranking
of the code snippets.

2 Overview

We give an overview of Sniff using a simple example. Consider a Java pro-
grammer who is unfamiliar with the Java classes Runtime and Process. The
programmer wants to execute a system command such as ls from inside a Java
program. The required code snippet is shown in Table 2.

Runtime r = Runtime.getRuntime();

Process p = r.exec(String command);

Table 2. Executing a system command in Java

The code is relatively difficult for the programmer to infer for several rea-
sons. First, it is hard for a programmer unfamiliar with the Java APIs to figure
out that the Runtime class is required to get the runtime and to execute the
command in that runtime. It is even harder for the programmer to discover that
the methods getRuntime and exec should be called in that order to first obtain



the runtime and then to execute the command, respectively. Finally, an object
of class Process is required to create a separate process and execute the com-
mand. In this situation, the programmer has a couple of options to discover the
code snippet. (1) The programmer could search the web (e.g. using Google) by
posting a query such as “execute command in Java.” (2) The programmer could
use an existing code synthesizer such as Prospector [14] or PARSEWeb [20]. The
results returned by web search would not often give the exact code snippet, but
rather some large code fragments that have the relevant statements surrounded
by other statements and non-Java text. The programmer then needs to manually
examine such code fragments for the exact code snippet. The problem with the
code synthesizers is that the programmer needs to know the object types (e.g.
Runtime and Process in this case) that he/she wants to synthesize.

Candidate Codes Result of Intersection

Runtime r = Runtime.getRuntime();

String command = "clear";

Process p = r.exec(command);

Runtime r = Runtime.getRuntime();

flag = 1;

// flag set if branch entered

Process p = r.exec("ls");

Runtime r = Runtime.getRuntime();

Process p = r.exec(String command);

Table 3. Intersection of Code Snippets

Sniff retains the flexibility of performing the search in plain English (as
in web search), while obtaining small code snippets (as in Prospector or
PARSEWeb) that are relevant to the query. In particular, the programmer will
type the query “execute command” in Sniff and Sniff will return a small set
of concise and relevant code snippets, that would execute a system command
from inside Java.

Sniff works as follows: In a nutshell, Sniff takes a large amount of publicly
available Java source code and indexes [2] it in a database. A query to Sniff
examines this database and collects code chunks that match the query. Sniff
then performs a Java syntax-aware intersection of these code chunks and returns
a small set of concise and relevant code-snippets. Although the above steps
look trivial, each step presents a number of technical challenges. For example,
during the indexing phase, what should be considered as keywords? A natural
answer would be to consider the words in comments and method names as
keywords. However, this straightforward approach does not work, because user
codes usually have very few comments and the method names do not always
reflect the actual functionality of the method. For example, the code in the
first column of Table 3 does not reflect that it is meant for executing a system
command.

We address this indexing problem in a novel way. We have observed that
although the user of the Runtime class does not write any comment about the
purpose of the code, the Runtime class is well-documented and can be used to
annotate the user code to help us understand the purpose of the user-written



code. For example, given the code chunk in Table 1, one can automatically
annotate it with comments as shown in Table 4 by inserting the Javadoc de-
scription of a method after each statement that contains the method. For code
in figure 1, these Javadoc descriptions are collected from the FileReader and
BufferedReader classes. This special method of annotating a user-written and
possibly uncommented Java source file adds extra useful information about the
user code. Sniff subsequently indexes the annotated user codes in a database
for the purpose of query.

A query to Sniff, like “execute command” searches this database and re-
turns the consecutive lines of code from a single source class, that contain both
the keywords execute and command of the query. Assume that the first col-
umn of Table 3 lists two such candidate codes returned for the query “execute
command”. Any such candidate contains the relevant code along with possibly
irrelevant code. The irrelevant code might either contain completely irrelevant
information, like initialization of some arbitrary variable (e.g. flag = 1; in the
second code snippet in Table 3) or might contain statements like Runtime r =
Runtime.getRuntime(); which are essential for correctness of the implemen-
tation but do not match to any query keyword. Our observation is that the
irrelevant statements are dissimilar across the candidates, while relevant state-
ments are similar (syntactically identical) in almost all of them. Therefore, we
perform a type-based intersection of these candidates to extract the relevant
statements out of them. The second column of Table 3 shows the intersection of
the candidates from the first column. The comments inserted by Sniff are not
shown in Table 3 for convenience. Note that intersection retains the common
statements of the two candidate codes, but removes the statements specific to
each individual code. This intersection step is another novel contribution of this
work and distinguishes Sniff from other code search engines. Specifically, our
intersection allows Sniff to return a concise and relevant code snippet instead
of a set of code chunks containing some irrelevant statements. We will explain
our intersection algorithm in section 3.

Finally, there might be multiple code snippets that achieve the same pro-
gramming purpose. In order to represent all possible relevant code snippets, we
perform clustering to group similar snippets together. These clusters must be
meaningfully ranked so that the most relevant snippets are displayed at the top.
We have observed that the most relevant snippets are also the ones that are
implemented most frequently in our indexed code. Hence, we rank the clusters
based on the number of constituent snippets.

3 Our Approach and Algorithm

In this section, we describe in details our approach for generating code snippets
from a user query. We begin with formal definitions of user query, code chunk
and code snippet.

Definition 1. A user query is defined as a sequence q = (w1, w2, · · · , wn),
where each wi is a string of characters. We call each wi a keyword.



An example of a user query is (“execute”, “command”).

Definition 2. A code chunk C is defined as an ordered list of statements
s1; s2; · · · ; sn that occur in contiguous lines in some Java method body. A code
snippet S is defined as an ordered list of statements s′1; s′2; · · · ; s′m that occur
in the same order (but not necessarily contiguous) in some Java method body. A
code snippet might omit some intermediate statements from a method body.

Note that every code chunk is a code snippet, but not vice-versa. For example,
in Table 3, the first column shows the code chunks while the second column shows
a code snippet. We now describe the components of Sniff.

...
FileReader fr = new FileReader(fileName); // File Reader

// Creates new FileReader given file name read
BufferedReader br = new BufferedReader(fr); // Buffered Reader

// Creates character-input stream
// uses input buffer specified size

...

Table 4. Annotated code generated by Sniff

3.1 Preprocessing: Parsing Open-Source Java Code

We assume that our codebase has a large collection of Java source code and that
these Java classes contain sufficient number of examples on how to use various
common Java APIs.

Most often, these Java classes, which we will call client classes, contain very
few user comments. Sniff annotates this client code by adding its own com-
ments. This annotation is performed in a novel and automatic way. It first col-
lects the Javadoc descriptions and user comments for every class and its methods
defined in the standard Java API as well as in the client code. These comments
are pruned to remove common word classes like prepositions, conjunctions and
articles (called stopwords). Sniff also performs a preliminary natural language
processing in form of stemming [16] on all the keywords in the comment.

Sniff then creates a map MethToComments: Sig → Comment from each
method signature Sig to its Javadoc comments Comment, where a method
signature contains the class name containing the method, the method name, the
types of the method’s arguments and the return type of the method. Finally,
Sniff performs a simplifying transformation of the client code to convert it into
an intermediate representation. The grammar for this intermediate form is given
in Table 5. The purpose of this transformation is to simplify the indexing and
retrieval of the code snippets in the latter stages of the system.

stmt ::= var = expr | var.field = expr | var.method(var*)

| var = var.method(var*) | if (expr) goto label

expr ::= constant | var | var.field | var op var

Table 5. Intermediate representation for the client code



3.2 Preprocessing: Annotating and Indexing the Client Code

After the previously described transformation, Sniff performs the actual anno-
tation using the MethToComment map as follows. Sniff parses each client Java
source file. For each statement that contains a method call var.method(var*)
with signature, say sig, Sniff adds the comment MethToComment(sig) at the
end of the statement. Java coding convention recommends the use of descriptive
method names, where the first character of every internal word is capitalized.
(e.g. ‘readLine’). Therefore, we also break the method name using these capi-
talizations to identify the breakpoints and add it as a part of the comment to the
statement containing the method call. For example, readLine is broken up into
read and Line and these two words are added as comments to any statement
that contains the method call readLine. Thus, the client code in Table 1 gets
converted to the commented code shown in Table 4.

Sniff then indexes the commented code in a database. Our database schema
contains two tables. The first table stores the individual statements in the client
source files and the second table stores the tuples (keyword, statementid). A
tuple for the string keyword gives the primary key of the statement whose com-
ments contain keyword.

3.3 Responding to a Query

Obtaining Code Chunks using Database: Sniff takes a user query as an
input and applies the same stop-word removal and stemming to it as in the
previous section. This modified query will be referred to as q for the remaining
portion of the discussion. q is then treated as a bag of words, i.e. the ordering
between the keywords is ignored. We search for each keyword wi in q in the
database and retrieve the code chunks that contain all keywords wi in q. We
enhance these code chunks by adding a few lines of code located before and
after the keyword-matching region in the original source file.

Returning the code chunks “as is” is not useful because (with respect to
the user query) these code chunks contain both relevant statements as well as
irrelevant ones. We would like to return only those statements that are relevant to
the user query. A natural way to return the relevant statements would be to only
return those statements whose comments contain at least one keyword. However,
we observed that some of the statements that do not contain any keyword in their
comments are often the useful glue among the statements containing a keyword;
therefore such statements cannot be classified as irrelevant. An example of this
is in Table 3. The Runtime class and its method does not contain the comments
relevant to “execute command”, but it is required for actually executing a system
command as a String. We also observed that these relevant statements, unlike
the irrelevant statements, are present in all code chunks. Therefore, to obtain
the maximal relevant code snippets, we take an intersection of the code chunks
obtained from the previous step.

We next give an algorithm to perform an intersection of any two code snip-
pets. Since each code chunk is also a code snippet, the intersection operation will



apply equally well to code chunks. Every statement in the code chunks returned
by the database has the form given in Table 5. We define equivalence ∼ of two
statements recursively as follows.

– var1 = expr1 ∼ var2 = expr2 iff typeOf (var1) = typeOf (var2) and expr1 ∼
expr2.

– var1.field1 = expr1 ∼ var2.field2 = expr2 iff typeOf (var1) = typeOf (var2),
field1 = field2, and expr1 ∼ expr2.

– var1.method1(vars1*) ∼ var2.method2(vars2*) iff typeOf (var1) =
typeOf (var2), method1 = method2, and typeOf (vars1*) = typeOf (vars2*).

– if (expr1) goto label1 ∼ if (expr2) goto label2 iff expr1 ∼ expr2.
– label1 ∼ label2.
– var1 op1 var1’ ∼ var2 op2 var2’ iff typeOf (var1) = typeOf (var2),

typeOf (var1’) = typeOf (var2’), and op1 = op2.
– var1 ∼ var2 iff typeOf (var1) = typeOf (var2).

– var1.field1 ∼ var2.field2 iff typeOf (var1) = typeOf (var2) and field1 =

field2.

Let S = s1; s2; · · · ; sm and R = r1; r2; · · · ; rn be any two code snippets. Note that
these snippets contain comments added by Sniff. We define the intersection
of S and R, denoted by S u R, as the longest common subsequence (LCS) of
S and R defined as follows: The LCS of S and R is the longest subsequence
Q = si1 ; si2 ; · · · ; sil

of S such that there exists a subsequence T = rj1 ; rj2 ; · · · ; rjl

of R, where 1 ≤ i1 < i2 · · · < il ≤ m; 1 ≤ j1 < j2 < · · · < jl ≤ n and sik
∼ rjk

for
all k. The LCS of two code snippets can be computed using a modification of a
standard dynamic programming algorithm [4]. The complexity of the algorithm
in O(mn) where m and n are the sizes of the two code snippets respectively. All
the code chunks (or snippets) ever handled by Sniff are small in size (less than
10 lines of code) and hence the quadratic running time of the algorithm is not
an excessive overhead.

Clustering Code Snippets: The code chunks obtained from the main
database are grouped together based on their similarity. Informally, two code
chunks are similar if their intersection is still relevant to the query and does not
lose too much information. We next formalize this notion of relevance. We first
define validity as a measure of similarity of two snippets.

Let S = {S1, S2, · · · , Sm} be a set of code snippets and let q = w1w2 · · ·wn

be a user query. A code snippet Si is said to be q-valid if its code and comments
together contain all keywords wj from the query q. For example, the code chunks
returned from the main database in response to q are q-valid by definition. We
will henceforth use valid in place of q-valid, when the query q is understood.
Similarity of code snippets is defined below:
Definition 3. Two code snippets Si and Sj are defined to be similar if their
intersection Si u Sj is valid.

Informally, an initial code chunk matched to a query contains some lines of
code which are relevant to the query, and others which are not. It should be noted
that the relevant lines of code need not contain any of the keywords. Intersecting
two code chunks or snippets attempts to remove the irrelevant lines of code, while



keeping the ones which are relevant to the query (either through the presence of
keywords, or because of issues concerning correct implementation). The intuition
behind the intersection operation is that the relevant lines would co-occur in both
the chunks while the irrelevant lines would not match. If the common lines found
by the intersection operation still contain all the keywords, then the two code
chunks or snippets are similar.

However, in some cases, there might be multiple method call sequences which
correctly perform the task specified by the query. In that case, two such code
chunks or snippets (corresponding to different sequences) would not contain all
the keywords in their intersection, as the statements in each of them will be
different. Thus, these two code chunks or snippets will be dissimilar.

We cluster the code snippets based on this similarity measure. The idea be-
hind clustering is to group similar code snippets in one cluster. The intersection
of all code snippets {Si1 , Si2 , · · ·Sir} in a cluster represents the most relevant
code to the query, that can be extracted out of those snippets. Formally, clus-
tering is defined as a function F : S → {1, 2, · · · p}, where S is a set of code
snippets and p ≤ |S|, satisfying the condition that if F(Si) = F(Sj), then Si

and Sj are similar. All snippets mapping to the same integer are said to be in
the same cluster, and are represented by a single snippet in the final results.
The clustering procedure is detailed in Algorithm 1. The running time of this
procedure is quadratic in number of candidate code chunks. Our observation is
that the number of code chunks returned from the database is very small (less
than 30 on an average), and hence clustering runs very fast on them.

Algorithm 1 Clustering and Ranking algorithm
Input: C = C1, C2, ....., CN , the list of code chunks returned for the query
Output: I, the set of all clusters of code chunks in C.
1: I ← C
2: for all Ci ∈ I do
3: support(Ci) = 1
4: end for
5: for all Ci ∈ I do
6: for all Cj ∈ I, Cj 6= Ci do
7: C ← Ci u Cj

8: if isValid(C) then
9: support(C) = support(Ci) + support(Cj)
10: I ← I ∪ {C} \ {Ci, Cj}
11: end if
12: end for
13: end for
14: return sort(I, support)

Ranking Code Snippets: After clustering, Sniff ranks code snippets before
returning them to the user. Ranking should reflect the relevance of the code
snippet to the query. We observe that the most relevant code snippet to the
query is generally implemented in a large number of client classes and methods,
and hence is the most common way of performing the programming task required
by the query. We formalize this property of code snippets by using support of the
snippet defined as follows: For every code chunk Ci returned from the database,
support(Ci) = 1. The support of an intersection is defined as the sum of the
supports of code snippets that participate in the intersection operation. Thus
support(S1 uS2 u · · · uSk) =

∑k
j=1 support(Sj). That is, support represents the



number of occurrences of the snippet across client source files. Lines 3 and 9 of
the Algorithm 1 initialize and update the supports of the clusters respectively.
We rank the clusters based on their supports, with the clusters having higher
supports receiving higher ranks.

4 Implementation

We have implemented Sniff as an eclipse plugin for Java. The implementation
constructs the map MethToComments (described in Section 3.1) and annotates
the client code using Eclipse’s JDT parser [18]. The parser creates an AST rep-
resenting the source file, with each node of the AST annotated with its type.
We use the nodes where a method or a constructor is invoked (represented by
types MethodInvocation and ClassInstanceCreation respectively), as poten-
tial places for inserting comments. We have developed our own comment and
query processor that performs stemming [16] on the Javadoc comments and user
queries as explained in section 3.

Our main database for storing the snippets runs on a MySQL server. The
server resides on a desktop PC with 2.00GHz Intel 8-core processor and 8-GB
memory running SUSE Linux Kernel-2.6.16. We have indexed around 500K lines
of code. The client code consists of Eclipse framework API, code from online ex-
amples associated with different editions of O’Reilly Java programming books [9]
and Jgraph: Java’s Graph Visualization and Layout library [10]. The reason for
using the java example repository is the variety of Java APIs used in these exam-
ples. The repository contains thousands of examples that use Java’s core APIs
from domains like I/O, networking, Java Swing, Netbeans etc.

5 Evaluation

We conducted three different experiments using Sniff to show that Sniff is
effective in solving programmers’ queries and to compare it against the existing
tools and search engines. In our first experiment, we compared Sniff against
tools such as Prospector [14] and Google Code Search(GCS) [5]. We performed
controlled user experiments where a set of programming problems were given
to a group of users and their performance (i.e. the time they spent to complete
the tasks) using different tools was observed. In the second experiment, we com-
pared Sniff against online code search engines like GCS, Koders and Krugle.
We manually collected programming problems posted on a Java user forum [8]
and converted them into natural language queries. We then posed these queries
to Sniff as well as the online search engines and compared the results. We
performed a third experiment to show the effectiveness of our intersection and
ranking techniques.

5.1 User Study

Our user study was aimed at evaluating the usefulness of Sniff to developers
for real programming tasks which involved reuse of existing APIs. We designed
four programming problems and assigned them to a set of users. We had eight



participants in our study. Each user was allowed to use Sniff for two of the
four problems. Of the remaining two, they were allowed to use Prospector for
one problem and Google Code Search Engine for the other. We assigned the
problems and the tools to be used to solve them randomly to each user. We
recorded users’ final answers, the time they spent to complete each problem, the
queries they issued, and the rank of the snippet that they used in their code.

Each user was given a brief introduction to Sniff and Prospector. In the
introduction we described the tools using a short demo. There was no training
phase and none of the users participating in the user study had used Sniff
before. The users were graduate students who had moderate to expert program-
ming skills in Java.

The programming problems were designed to approximate real programming
tasks. The users were not given any hints about when to use Sniff (or any of
the other tools/search engines). However, the tasks were designed in such a way
that they involved the usage of some APIs which were not very commonly used.
The motivation for this scheme was to ensure that the users would be required
to search for some APIs that they did not know about. The four programming
problems for the user study were as follows:

1. Problem 1: In Eclipse, the visual representation of the editor, i.e. the
actual window we see on the editor, is called the active editor. The task is
to retrieve this active editor from the workbench.

2. Problem 2: JDOM is a parser for parsing java source files and identifying
method declarations/invocations etc. The task is to use this parser to parse
a java source and create and AST.

3. Problem 3: JDBC is the Java technology to connect to a remote database
and run SQL queries on it. The user is given the url of a remote database
server. The task is to connect to the database using JDBC.

4. Problem 4: I have a generic Viewer object in Eclipse and I want to pop-up
a dialog displaying all directories in the workspace. The task is to open such
a directory dialog.

The results of the experiments are given in Figure 1. The plot in the figure
gives the average time taken by the users on each problem using different tools.
The plot shows that on all problems, Sniff took about 40% less time as com-
pared to Prospector and Google Code Search. In problem 1, the users had diffi-
culty in deducing the desired return type, IEditorPart; therefore, they ended up
browsing the eclipse API while using Prospector. We observed similar trend in
problem 3, where the desired destination class was java.sql.Connection. The
JDOM API in problem 2 is fairly complicated and Google Code Search failed to
return the specific code snippet for parsing the java file. In fact, on all queries,
the results returned by Google Code Search required significant manual inspec-
tion (most of the time in the associated source code) to arrive at the desired code
snippets. Sniff returned the exact code snippet, although the users needed to
play around a little with their queries to arrive at this code snippet. Also, the
snippets returned by Sniff required the least amount of post-processing at the
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Fig. 1. Average time taken by the users on the problems using each tool

users’ end. Most of this post-processing was renaming variables and importing
required packages, which was pretty straightforward.

5.2 Comparison with Online Search Engines

We collected random queries from the ones issued by the users in the previous
section and issued them to Sniff as well as online search engines like Google
Code Search [5], Koders [12], and Krugle [3]. We also collected some of the most
common programming problems from frequently asked questions on a Java user
forum [8] and formulated them as natural language queries. On all of these
queries, we compared the results of Sniff and online search engines with the
responses posted on the forum. Table 6 shows the rank of the most relevant
snippet (as judged by a human programmer based on the forum response) using
different tools. All existing search engines display a set of small code snippets
in response to the query. These snippets are hyperlinked to the entire source
files that contain them, and clicking on the snippets displays the contents of the
files with keywords highlighted in different colors. We have manually searched
these returned results and report a match if the returned source file contains the
desired code snippet. A - in the table means that the desired code snippet was
not present in top 10 hits from the corresponding tool. The last three lines for
each tool give the percentage of queries where the most relevant code snippet
is among top 1, 5 and 10 hits respectively. Our experiments show that Sniff
returned the most relevant snippet as the top ranked snippet for 87.5% of queries.
The same numbers for GCS, Koders and Krugle are 25%, 62.5% and 12.5%
respectively. One all the queries, Sniff returned the most relevant code snippet
in top 5 results.

5.3 Effectiveness of intersection and clustering techniques in Sniff

In order to show the effectiveness of our intersection and clustering algorithms,
we first issued the queries given in Table 6 to Sniff with intersection and clus-
tering turned on. We then issued the same queries after disabling the intersec-
tion and clustering. During this phase, we ranked the snippets simply based



Query Rank of the top snippet that
matched the forum response
GCS Koders Krugle SNIFF

get active editor window from eclipse workbench 2 2 2 1

parse a java source and create ast 2 3 2 1

connect to a database using jdbc 2 1 - 1

display directory dialog from viewer in eclipse - 9 2 1

read a line of text from a file 6 1 - 1

return an audio clip from url 1 1 1 1

execute SQL query 1 1 3 2

return current selection from eclipse workbench 5 1 4 1

Relevant snippet is top ranked (%) 25 62.5 12.5 87.5

Relevant snippet is in top 5 hits (%) 75 87.5 75 100

Relevant snippet is in top 10 hits (%) 87.5 100 75 100
Table 6. Results from existing code search engines on user queries.

on their sizes with the smaller snippets getting higher ranks. We compared the
ranks and sizes (in LOC) of the most relevant snippets with and without in-
tersection/clustering. We also compared the amount of pruning obtained using
intersection.

The results are shown in Table 7. The first column of the table gives the
queries. The next two columns give the rank of the most relevant code snippet
with and without intersection and clustering (denoted I/C and No I/C, re-
spectively.) The next two columns give similar observations for the size of the
most relevant snippet. The table shows that the rank and size of the returned
snippet is better when intersection and clustering are turned on. In more than
half of the cases, the most relevant snippets are poorly ranked when intersection
is turned off. Intersection also reduces the size of resultant snippets by 34% on
an average. Smaller size of snippet usually means less post-processing time on
the returned snippets required by the users.

6 Other Related Work

A large fraction of the previous research, including Prospector [14] has focused
on user queries of the form Tin → Tout, where Tin is a source object and Tout is
a destination object. These tools return code snippets that convert Tin to Tout,
using a sequence of API method calls. PARSEWeb [20] and XSnippet [17] are
two more examples in this research direction.

PARSEWeb [20] gathers the relevant code samples from GCS and performs
a static analysis over them to answer the queries of type Tin → Tout. They also
split the query by introducing intermediate object types. The dynamic database
(that of Google Code Search) together with the query splitting results in some
reported improvements. XSnippet [17] makes use of context information along
with a user query for finding relevant snippets. Their object instantiation queries
can be classified as type-based (from type Tin to type Tout) or parent-based, where
parenthood is defined by the subclass-superclass relation.

Although there is variation in the expressiveness of queries allowed by these
approaches, the basic structure of the queries is still limited to object instan-



Query Rank Size(in LOC)
I/C No I/C I/C No I/C

get active editor window from eclipse workbench 1 3 3 4

parse a java source and create ast 1 1 2 4

connect to a database using jdbc 1 6 3 6

display directory dialog from viewer in eclipse 1 1 4 7

read a line of text from a file 1 3 3 5

return an audio clip from url 1 2 6 6

execute SQL query 2 2 2 5

return current selection from eclipse workbench 1 2 2 4
Table 7. Effect of Intersection and Clustering on Results

tiation and cannot be generalized to free-form natural language queries. Sniff
does not suffer from this limitation since it allows free-form queries.

An alternate approach is the work of Murphy et al [6, 7], which locates ex-
ample code files relevant to the code under development. The work focuses on
structural context matching heuristics. However, this approach does not allow
the user to explicitly specify a query and hence, proves to be useful only in spe-
cial cases, when the code under development is very similar to some example in
the repository. Often, the developer might not have enough context present in
her program to be guided to an actually relevant example.

SPARS-J [15] is a closely related Java class retrieval system that applies
a graph-based model to the programs. It returns a ranked set of classes to a
free-form user query using a frequency-of-usage based heuristic. However, the
SPARS-J technique is not aware of the functionality of a method or API beyond
what is suggested by its name. Several user queries in our experiments were
based on functionality. Sniff gathers much more information about the source
code from its inline comments or JavaDoc specifications. Moreover, SPARSE-J
returns relevant classes and it often requires time and expertise to identify the
precise snippet inside a complicated class/API.

The role of comments as an aid to program understanding has been a well-
studied topic [21]. iComment [19] automatically analyzes comments written in
natural language to extract implicit program rules and uses them to automati-
cally detect inconsistencies between comments and source code, indicating either
bugs or bad comments. However, extracting and using the information contained
in comments can be hard, since comments often convey other information like
directions to colleagues (especially in a group development environment) [22].

Besides comments, program invariants is another interesting direction for
identifying code snippets. There has also been a lot of work on inferring specifi-
cations [1, 13]. However, we believe that in the context of code reuse and search-
ing for relevant APIs and their usage patterns, comments are much more useful
than formal specification of invariants.

Our intersection approach has some similarities with DECKARD [11]. How-
ever, Sniff performs type-based intersection only at the statement level (since
we treat a program as an ordered list of statements), while DECKARD focuses
on efficient algorithms for identifying similar subtrees and applying it to tree
representations of the source code.



7 Conclusion
We have shown that our approach to locate relevant snippets for a free-form
query has a lot of promise. Inserting API comments in the client code at the
right places helps in localizing search results. Our current results for free-form
queries are already better than several existing code search engines. The inter-
section performed by Sniff is also critical in coming up with the relevant code
snippet(s), while separating out the statements that are irrelevant to the query.
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