PARLab Parallel Boot Camp

PARLab Application: Speech recognition for meetings

Nelson Morgan

International Computer Science Institute (ICSI) and

Electrical Engineering and Computer Sciences
University of California, Berkeley

PARLab Parallel Boot Camp

PARLab Application: Speech recognition for meetings

Representing work from a number of people, but primarily: Adam Janin, Chris Oei, Suman Ravuri, Sherry Zhao (ICSI)

And

Jike Chong, Youngmin Yi, and Ekaterina Gonina (UCB/EECS)

The "meeting" application - goals

For "real" meetings:

- Replacing inconsistent note-taking
- Access to transcriptions
- Indexed information for search
- · Query-specific summaries

The "meeting diarizer" application

The "meeting" application - challenges

- Most meeting rooms not heavily instrumented
- Resulting signals have significant noise and reverberation -> poor speech recognition accuracy
- · Real time performance necessary for many scenarios
- · Some applications require better than real time
- Other components aside from speech recognition also required
- Not just a need for speed: also a need for better performance (accuracy)

The "meeting" application - primary questions

- · Can extreme parallelism be used to improve accuracy?
- Can we make use of PARLab primitives to efficiently represent all of the components of this application?
- Can new approaches to this application be coded by mere mortals?

Components of the application

- · Automatic speech recognition
- Speaker diarization
- Speaker recognition
- · Question answering/summarization
- Topic clustering

•

Basic uni-stream speech recognition

8/21/09 Nelson Morgan Parallel Architecture: 8

High Level Parallel Pattern

- System level parallelism is determined by "decoding" strategy.
 Current state-of-the-art decoders are time synchronous, but this is not the only option.
- *With time synchronous decoding, the system-level pattern is pipe-and-filter with task parallelism.
- Most systems integrate the local probability estimator and the decoder.
- •Currently signal processing part is small; but should it be?

Speech recognition: one stream to multi to many

- Speech recognition works well under good conditions given plentiful resources (e.g., training) [<10% word error rate (WER)]
- Poor performance for common conditions [>30% WER] (noise, reverb, + casual/conversational speech)
- Multiple and diverse signal processing methods help, e.g., several "streams" of features
- An open question: can a large (>100) number of streams provide much greater robustness?
- Preliminary results suggest yes (15% WER -> 8%)

Multi/many stream speech recognition

8/21/09 Nelson Morgan Parallel Architecture: 11

Multi/many stream feature extraction

Multi/many stream parallel pattern

- Multi/many stream computation
 - Map Reduce pattern
 - Task parallelism
- Gabor filters
 - Dense linear algebra, SIMD
- MLPs
 - *Dense linear algebra, SIMD
- •If the filters are similar enough, one could instead use SIMD across all the filters.

Multilayer Perceptron (a.k.a Neural Network)

8/21/09 Nelson Morgan Parallel Architecture: 14

Decoder

- The "decoder" outputs the most likely word sequence given the data.
- *Implemented as a Weighted Finite State Transducer
- Complex graph traversal algorithm
- •Innermost loop is state (node) update
 - Parallel over states OR arcs
 - •SIMD

Parallelizing the parts

- Explicitly parallel parts: multiple feature streams, including MLPs -> task parallel
- Embarassingly parallel parts: MLPs, Gabor filter, and Gaussian computations -> dense linear algebra, SIMD.
- Tricky stuff: speech "decoding" -> graph traversal (currently done with weighted finite state transducers)

Summary

- Application person's point of view: improving the application performance
- Parallelization is a means to that end
- · For some applications, faster than real-time is useful
- To run meeting app on future handheld devices, parallelism will be required
- Each of the meeting diarizer components needs to be parallelized
- For the speech recognition part, we have done this in a painstaking way
- Given the identification of parallel motifs, we hope to be able to build the full application with ParLab tools